高级检索

蓝宝石与Invar合金超快激光选区微焊接接头组织和性能

蒋青, 徐佳宜, 杨瑾, 赵一璇, 潘瑞, 李鹏

蒋青, 徐佳宜, 杨瑾, 赵一璇, 潘瑞, 李鹏. 蓝宝石与Invar合金超快激光选区微焊接接头组织和性能[J]. 焊接学报, 2023, 44(12): 41-48, 62. DOI: 10.12073/j.hjxb.20230613012
引用本文: 蒋青, 徐佳宜, 杨瑾, 赵一璇, 潘瑞, 李鹏. 蓝宝石与Invar合金超快激光选区微焊接接头组织和性能[J]. 焊接学报, 2023, 44(12): 41-48, 62. DOI: 10.12073/j.hjxb.20230613012
JIANG Qing, XU Jiayi, YANG Jin, ZHAO Yixuan, PAN Rui, LI Peng. Microstructural and properties of ultrafast laser selective micro-welding joints of sapphire and Invar alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 41-48, 62. DOI: 10.12073/j.hjxb.20230613012
Citation: JIANG Qing, XU Jiayi, YANG Jin, ZHAO Yixuan, PAN Rui, LI Peng. Microstructural and properties of ultrafast laser selective micro-welding joints of sapphire and Invar alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 41-48, 62. DOI: 10.12073/j.hjxb.20230613012

蓝宝石与Invar合金超快激光选区微焊接接头组织和性能

基金项目: 国家自然科学基金资助项目(52275155、5220051748);上海市III类高峰学科—材料科学与工程(高能束流智能加工与绿色制造).
详细信息
    作者简介:

    蒋青,硕士;主要研究方向为蓝宝石异质超快激光连接工艺与机理;Email: jiangq_ng@163.com

    通讯作者:

    杨瑾,博士,副教授;Email: jyang@sues.edu.cn

  • 中图分类号: TG 456;TG 136+.3

Microstructural and properties of ultrafast laser selective micro-welding joints of sapphire and Invar alloys

  • 摘要:

    采用飞秒激光选区微焊接技术制备了蓝宝石/Invar合金异质材料接头,研究了激光功率对接头密封性、宏微观形貌和剪切性能的影响. 采用扫描电子显微镜、能谱分析仪和激光共聚焦显微镜等表征了接头界面焊接缺陷与元素分布的规律以及接头断裂行为. 结果表明,蓝宝石和Invar合金分别经过非线性吸收和线性吸收作用,材料发生了熔化、混合和扩散,形成了犬牙交错的连接界面,说明界面存在着冶金结合和机械咬合双重作用. 接头抗剪强度随激光功率单调增加,当激光功率为10.19 W时,最大抗剪强度为145.3 MPa. 蓝宝石/Invar合金接头的断裂形式主要为解理性断裂,两侧断口均有Fe,Ni,Al和O元素,进一步说明了超快激光促进了两种材料在界面的冶金反应.

    Abstract:

    The heterostructure joint of sapphire/Invar alloy was prepared using femtosecond laser selective welding technology, and the effects of laser power on the sealing performance, macro, micro-morphology, and shear strength of the joint were investigated. The interface welding defects, elemental distribution, and fracture behavior of the joint were characterized using scanning electron microscopy, energy dispersive spectroscopy, and laser scanning confocal microscope. The results showed that under ultrafast laser irradiation, sapphire and Invar alloy underwent melting, mixing, and diffusion processes through nonlinear absorption and linear absorption, respectively. This resulted in the formation of interlocking interfaces with intermingled features, indicating the presence of both metallurgical bonding and mechanical interlocking. The shear strength of the joint increases monotonically with the laser power, and the maximum shear strength is 145.3 MPa at a laser power of 10.19 W. The fracture of the sapphire/Invar alloy joint is mainly in the form of cleavage fracture, and both sides of the fracture contain the elements of Fe, Ni, Al, and O, which further suggests that the ultra-fast laser promotes metallurgical reactions of the two materials at the interface.

  • 图  1   超快激光选区微焊接示意图(mm)

    Figure  1.   Schematic illustration of femtosecond laser selective microwelding

    图  2   不同激光功率蓝宝石/Inavr合金接头密封性试验

    Figure  2.   Seal tightness testing of laser joints at different laser average powers. (a) 7.24 W; (b) 8.23 W; (c) 10.19 W

    图  3   蓝宝石/Inavr合金飞秒激光选区微焊接头宏观形貌

    Figure  3.   Macroscopic morphology of laser joints at different laser powers. (a) 7.24 W; (b) 8.23 W; (c) 10.19 W

    图  4   激光功率为7.24 W时界面SEM及EDS图

    Figure  4.   Interfaial SEM and EDS analysis with laser power of 7.24 W. (a) SEM; (b) EDS

    图  5   激光功率为8.23 W时界面SEM及EDS图

    Figure  5.   Interfaial SEM and EDS analysis with laser power of 8.23 W. (a) SEM; (b) EDS

    图  6   激光功率为10.19 W时界面SEM及EDS图

    Figure  6.   Interfaial SEM and EDS analysis with laser power of 10.19 W. (a) SEM; (b) EDS

    图  7   不同激光功率下的接头抗剪强度

    Figure  7.   Joint shear strength vs laser power

    图  8   不同激光功率下的断口宏观形貌

    Figure  8.   Macroscopic view of the fracture at different laser power. (a) Invar alloy side fracture; (b) sapphire side fracture

    图  9   不同激光功率断口SEM形貌

    Figure  9.   Fracture SEM at different power. (a) 7.24 W; (b) 8.23 W; (c) 10.19 W

    表  1   透明硬脆材料和其它材料不同连接方法与接头强度对比

    Table  1   Brittle materials and other materials made by various joining methods and joint strength

    文献试验材料连接方法抗剪强度Rτ/MPa
    文献[21]蓝宝石/氧化铝活性钎焊72.5
    文献[22]蓝宝石/
    Sn–9Zn–2Al
    超声辅助钎焊46
    文献[23]蓝宝石/铝超声波焊接74.42
    文献[24]蓝宝石/4j33合金钎焊95
    文献[25]蓝宝石/蓝宝石钎焊70
    文献[26]硼硅酸盐玻璃/
    硼硅酸盐玻璃
    超快激光108
    文献[27]Nd:YAG晶体/
    Nd:YAG晶体
    飞秒激光110
    下载: 导出CSV

    表  2   图9对应EDS分析 (原子分数,%)

    Table  2   EDS analysis of the points in Fig.9

    位置FeNiAlO
    A161.134.70.24.0
    A260.935.40.13.6
    A361.135.60.13.2
    A461.035.40.23.4
    A561.434.40.14.1
    A61.71.555.741.1
    A70.1065.034.9
    A85.01.854.738.5
    A90.30.063.236.5
    B161.435.00.43.1
    B259.433.91.65.1
    B326.217.026.430.4
    B410.77.140.841.4
    B550.131.46.412.1
    B60.30.256.243.3
    C161.832.91.34.0
    C261.934.70.33.1
    C355.231.43.210.2
    C455.433.83.47.4
    C54.22.942.450.5
    C65.62.352.639.5
    C70.30.057.841.9
    下载: 导出CSV
  • [1] 谢启明, 李奕威, 潘顺臣. 红外窗口和整流罩材料的发展和应用[J]. 红外技术, 2012, 34(10): 559 − 567.

    Xie Qiming, Li Yiwei, Pan Shunchen. Development and application of infrared window and fairing materials[J]. Infrared Technology, 2012, 34(10): 559 − 567.

    [2] 李书齐, 史维琴, 李华卿, 等. 蓝宝石的焊接方法研究现状[J]. 焊接, 2019(3): 18 − 23.

    Li Shuqi, Shi Weiqin, Li Huaqing, et al. Current status of research on soldering methods for sapphire[J]. Welding & Joining, 2019(3): 18 − 23.

    [3]

    Wu Xiaowei, Fu Junhong, Wei Shoujing, et al. Bonding mechanisms of SiO2 glass and 1060Al by ultrasonic assisted active metal soldering process[J]. China Welding, 2023, 32(2): 52 − 62.

    [4] 殷胜昔, 楚建新. 蓝宝石整流罩与金属弹体新型的连接方法研究[J]. 航空精密制造技术, 2010, 46(1): 54 − 57.

    Yin Shengxi. Chu Jianxin. Research on a new connection method between sapphire fairing and metal projectile[J]. Aerospace Precision Manufacturing Technology, 2010, 46(1): 54 − 57.

    [5] 李琪, 刘凤美, 乐雄, 等. 热处理对80 μm间隙下IC10高温合金TLP扩散焊组织及高温性能的影响[J]. 焊接学报, 2021, 42(5): 36 − 44.

    Li Qi, Liu Fengmei, Le Xiong, et al. Effect of heat treatment on the organization and high-temperature properties of TLP diffusion welding of IC10 high-temperature alloy with 80 μm gap[J]. Transactions of the China Welding Institution, 2021, 42(5): 36 − 44.

    [6]

    Xin C, Li N, Yan J. Microstructural evolution in the braze joint of sapphire to Kovar alloy by Ti-Cu metallization layer[J]. Journal of Materials Processing Technology, 2017, 248: 115 − 122. doi: 10.1016/j.jmatprotec.2017.05.016

    [7]

    Chen B, Shi T, Liao G. Laser welding of Zr41Ti14Cu12Ni10Be23 bulk metallic glass and zirconium metal[J]. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(4): 786 − 788. doi: 10.1007/s11595-014-0997-1

    [8] 刘红兵, 宣扬, 杨瑾, 等. Invar合金焊接技术研究现状及展望[J]. 航空制造技术, 2020, 63(9): 83 − 88.

    Liu Hongbing, Xuan Yang, Yang Jin, et al. Current status and prospect of Invar alloy welding technology[J]. Aviation Manufacturing Technology, 2020, 63(9): 83 − 88.

    [9] 李范, 郭诚. 激光选区熔化4J36因瓦合金成形工艺及性能[J]. 热加工工艺, 2023(21): 87 − 92.

    Li Fan, Guo Cheng. Forming process and properties of laser zone melting 4J36 Invalide alloy[J]. Thermal Processing Technology, 2023(21): 87 − 92.

    [10]

    Orazi L, Romoli L, Schmidt M, et al. Ultrafast laser manufacturing: from physics to industrial applications[J]. CIRP Annals, 2021, 70(2): 543 − 566. doi: 10.1016/j.cirp.2021.05.007

    [11] 张功达, 朱琦, 刘亚运, 等. 表面微结构对铝合金与PA66激光焊性能影响[J]. 焊接学报, 2023, 44(8): 28 − 33,48.

    Zhang Gongda, Zhu Qi, Liu Yayun, et al. Influence of surface microstructure on laser welding performance of aluminum alloy with PA66[J]. Transactions of the China Welding Institution, 2023, 44(8): 28 − 33,48.

    [12] 程战, 郭伟, 刘磊, 等. 石英玻璃与硅的飞秒激光微焊接及其接头性能研究[J]. 中国激光, 2015, 42(9): 225 − 231.

    Cheng Zhan, Guo Wei, Liu Lei, et al. Femtosecond laser micro-welding of quartz glass to silicon and its joint properties[J]. China Laser, 2015, 42(9): 225 − 231.

    [13] 潘泽浩, 程战, 刘磊, 等. 石英玻璃飞秒激光微焊接及其性能[J]. 焊接学报, 2016, 37(6): 5 − 8.

    Pan Zehao, Cheng Zhan, Liu Lei, et al. Femtosecond laser micro-welding of quartz glass and its properties[J]. Transactions of the China Welding Institution, 2016, 37(6): 5 − 8.

    [14]

    Ciuca O P, Carter R M, Prangnell P B, et al. Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds[J]. Materials Characterization, 2016, 120: 53 − 62. doi: 10.1016/j.matchar.2016.08.013

    [15]

    Yan T, Zhan X, Gao Q, et al. Influence of laser power on molten pool flow field of laser-MIG hybrid welded Invar alloy[J]. Optics & Laser Technology, 2021, 133: 1106539.

    [16]

    Gao Q, Yan T, Ling W, et al. Effect of vapor/plasma-liquid flow behavior on the keyhole oscillation in laser-MIG hybrid welding of Invar alloy[J]. Optics & Laser Technology, 2021, 140: 107054.

    [17]

    Watanabe W, Li Y, Itoh K. Ultrafast laser micro-processing of transparent material[J]. Optics & Laser Technology, 2016, 78: 52 − 61.

    [18]

    Pan R, Yang D, Zhou T, et al. Micro-welding of sapphire and metal by femtosecond laser[J]. Ceramics International, 2013, 49: 21384 − 21392.

    [19]

    Ouyang Z, Okamoto Y, Ogino Y, et al. Influence of numerical aperture on molten area formation in fusion micro-welding of glass by picosecond pulsed laser[J]. Applied Sciences, 2019, 9 (7): 1412.

    [20]

    Ji C H, Huang Y J, Chen X, et al. Direct microwelding of dissimilar glass and Kovar alloy without optical contact using femtosecond laser pulses[J]. Journal of Central South University, 2022, 29(10): 3422 − 3435. doi: 10.1007/s11771-022-5091-9

    [21] 宁洪龙, 黄福祥, 马莒生, 等. 蓝宝石的Ag(70.5) Cu(27.5)Ti2合金活性封接[J]. 稀有金属材料与工程, 2003(3): 236 − 239.

    Ning Honglong, Huang Fuxiang, Ma Jusheng, et al. Active sealing of Ag(70.5) Cu(27.5)Ti2 alloy in sapphire[J]. Rare Metal Materials and Engineering, 2003(3): 236 − 239.

    [22]

    Xu Y, Ma X, Yan J. Evolution of interfacial structures and mechanical performance of sapphire and Sn–9Zn–2Al joints by ultrasound[J]. International Journal of Applied Ceramic Technology, 2019, 16(6): 2254 − 2264. doi: 10.1111/ijac.13324

    [23]

    Lü J, Xiao Y, Liu B, et al. Microstructure evolution and interfacial bonding mechanisms of ultrasonically soldered sapphire/Al dissimilar joints using Sn-based solders[J]. Ceramics International, 2022, 48(14): 20070 − 20077. doi: 10.1016/j.ceramint.2022.03.284

    [24]

    Yao X, Zhao Y, Huang Y, et al. A novel CoCrNi medium entropy alloy enhanced AgCuTi composite filler to braze Kovar alloy and sapphire[J]. Materials Characterization, 2023, 197: 112668.

    [25]

    Guo W, Lin T, He P, et al. Microstructure and characterization of interfacial phases of sapphire/sapphire joint bonded using Bi2O3–B2O3–ZnO glass[J]. Journal of the European Ceramic Society, 2017, 37(3): 1073 − 1081. doi: 10.1016/j.jeurceramsoc.2016.10.010

    [26]

    Richter S, Zimmermann F, Döring S, et al. Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy[J]. Applied Physics A, 2012, 110(1): 9 − 15.

    [27]

    Lipateva T O, Okhrimchuk A G, Lipatiev A S, et al. Robust and adhesive-free joint of Nd: YAG crystals by femtosecond laser-assisted welding[J]. Optics & Laser Technology, 2022, 146: 107594.

    [28]

    Zhang Y, Jiang Q, Long M, et al. Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications[J]. Opto-Electronic Science, 2022, 1(6): 220005. doi: 10.29026/oes.2022.220005

图(9)  /  表(2)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  38
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 网络出版日期:  2023-11-12
  • 刊出日期:  2023-12-24

目录

    /

    返回文章
    返回