高级检索

柔性铜-银复合薄膜的激光直写制备及其导热特性

姚煜, 郭伟, 刘通, 周兴汶

姚煜, 郭伟, 刘通, 周兴汶. 柔性铜-银复合薄膜的激光直写制备及其导热特性[J]. 焊接学报, 2023, 44(12): 75-81. DOI: 10.12073/j.hjxb.20230613011
引用本文: 姚煜, 郭伟, 刘通, 周兴汶. 柔性铜-银复合薄膜的激光直写制备及其导热特性[J]. 焊接学报, 2023, 44(12): 75-81. DOI: 10.12073/j.hjxb.20230613011
YAO Yu, GUO Wei, LIU Tong, ZHOU Xingwen. Thermal conductivity of flexible Cu-Ag composite thin films by laser direct writing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 75-81. DOI: 10.12073/j.hjxb.20230613011
Citation: YAO Yu, GUO Wei, LIU Tong, ZHOU Xingwen. Thermal conductivity of flexible Cu-Ag composite thin films by laser direct writing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 75-81. DOI: 10.12073/j.hjxb.20230613011

柔性铜-银复合薄膜的激光直写制备及其导热特性

基金项目: 中国博士后科学基金(2023M732524);江苏省自然科学基金(BK20230497);江苏省卓越博士后计划(2023ZB548).
详细信息
    作者简介:

    姚煜,硕士;主要研究方向为微纳连接制造、铝合金CMT电弧增材制造技术;Email:18811571011@163.com

    通讯作者:

    周兴汶,博士;Email: xingwenzhou@suda.edu.cn

  • 中图分类号: TG 456

Thermal conductivity of flexible Cu-Ag composite thin films by laser direct writing

  • 摘要:

    随着柔性电子产品对高效热管理的需求不断增长,近年来制备高导电性柔性薄膜越来越受到人们的广泛关注. 以聚酰亚胺(PI)为基底,采用激光直写技术制备铜(Cu)和铜-银(Cu-Ag)薄膜,并对制备的Cu-Ag薄膜进行了物相分析和结构表征. 结果表明,铜纳米颗粒和银纳米线在激光辐照的作用下表面局部熔化,进而烧结;通过比较直写制备的铜薄膜和Cu-Ag薄膜在不同温度下7 天内电阻的变化,得出银的引入提高了复合材料整体的抗氧化性;对Cu/PI和Cu-Ag/PI两种复合材料的热扩散系数和热导率进行测试,得出银的引入提高了复合薄膜的热导率,Cu-Ag/PI薄膜表现出比Cu/PI薄膜更好的热性能. 为制备具有良好热稳定性的Cu /PI和Cu-Ag /PI复合材料提供了一种快速简便、经济节约的方法.

    Abstract:

    With the increasing demand of flexible electronic products for efficient thermal management, the preparation of flexible thin films with high conductivity has attracted more and more attention in recent years. Cu and Cu-Ag thin films are prepared by laser direct writing technique on polyimide (PI) substrate. The phase analysis and structure characterization of the two films show that the copper nanoparticles and silver nanowires are sintered by partial melting of their surface under laser irradiation. By comparing the resistance changes of prepared copper and Cu-Ag thin films at different temperatures for 7 days, it is concluded that the introduced silver improves the overall oxidation resistance of the composites. The thermal diffusivity and thermal conductivity of the two composites are tested, and it is found that the thermal conductivity of Cu-Ag/PI is significantly improved, showing better thermal performance than Cu/PI. This work provides a quick, simple and economical method for the preparation of Cu/PI and Cu-Ag/PI composites with good thermal stability.

  • 柔性电子器件已广泛应用于传感[1]、医疗[2]和航空航天[3]等领域,随着柔性电子器件的小型化,散热也逐渐成为一项挑战[4-7],电子元件良好的散热性能对于保证其速度、效率和可靠性至关重要[8-9], 通常情况下,材料的导热性能和导电性能呈正相关. 纳米铜/聚合物基复合材料因其电导率高、柔性好、成本低等优点被广泛应用于传感器、电子设备等领域. 激光直写技术可以同时实现纳米材料的合成和连接[10-12],从而简化工艺,同时由于制备过程中激光输入能量较低,可以选取低熔点的聚合物如PC[13]和PI[14]等作为基板,以此来制备柔性电子元件.

    Kwon等人[15]利用激光加工技术在PET透明基底上制造了导电铜结构,并提出在醋酸处理的环境下进行烧结,可以增强其导电性和机械稳定性.廖嘉宁等人[16]采用飞秒激光直写技术,在预涂覆铜离子涂层的柔性基体上通过激光还原,得到纳米铜颗粒并原位连接形成导电结构,成功制得了具有优良导电性能的铜微电极,方阻可达2.74 Ω/sq. 然而,纳米铜在空气中容易氧化,这会降低聚合物复合材料的导电性.

    在纳米铜中掺杂其它元素制备铜基复合材料,可以提高抗氧化性能. Yao等人[14]利用激光直写技术在PI上制备出Cu-C复合薄膜,形成的Cu-C核壳结构能够防止表面铜氧化,提高复合膜在空气中的稳定性,并对Cu-C/PI复合薄膜的热学性能进行研究,得出热导率为2.25 W/(m·K). 除了C元素外,在铜中掺杂银可以改变点缺陷的浓度,从而控制Cu离子的迁移并减少与氧气的接触[17],提高铜的抗氧化能力,同时银的掺杂扩展了铜的其它性能,如表面增强拉曼性能等;Moram等人[18]先利用飞秒激光的烧蚀作用,将块体Cu-Ag材料分解为铜纳米颗粒溶液和银纳米颗粒溶液,然后又在飞秒激光的辐照下合成Cu-Ag纳米合金,并研究了其表面增强拉曼性能;Yao等人[19]采用连续激光直写技术在玻璃上制备出Cu-CuxO薄膜,再浸泡于银纳米线溶液中,干燥后得到Cu-CuxO/Ag复合薄膜,研究了表面增强拉曼性能;Navas等人[20]同样利用激光烧蚀法制备出Cu-Ag核壳结构材料,研究了这种核壳结构的局部等离激元效应. 目前的研究多针对Cu-Ag结构的电性能、抗氧化性、表面增强拉曼性能等,对于导热性和热稳定性研究较少.

    文中以聚酰亚胺(PI)作为基底,利用激光直写技术制备了Cu-Ag复合薄膜,对其微观结构进行表征,研究Cu-Ag连接机理;对比了利用激光直写技术制备的Cu薄膜、Cu-Ag薄膜在不同温度(25,80和150 ℃)下7天内电阻的变化,研究了两种材料在不同温度下的抗氧化能力;同时测试了Cu/PI和Cu-Ag/PI复合薄膜的热扩散系数和热导率,比较PI,Cu/PI和Cu-Ag/PI复合薄膜的传热性能.

    利用激光直写技术制备Cu薄膜. ①将5 mol/L Cu(NO3)2和0.25 g/mL聚乙烯吡咯烷酮(PVP)水溶液以1∶1体积分数混合成前驱体溶液,其中PVP作为还原剂;② 采用迈耶棒涂法,将200 μL前驱体溶液涂覆在用O2-等离子预处理后的25 mm × 50 mm聚酰亚胺上,然后在50 ~ 60 ℃下干燥约10 ~ 15 min以形成均匀的固体薄膜;③ 进行激光直写,采用连续波二极管激光器(BWT Beijing Ltd,808 nm),光斑直径约600 μm,激光功率1.4 W,蛇形扫描路径,扫描速度10 mm/s;④用去离子水洗涤薄膜以除去未反应的溶液,在空气中干燥以获得铜导电薄膜,所有试剂均购自上海阿拉丁工业公司,均为分析级.

    采用多元醇法合成银纳米线(Ag NWs). ①将0.66 g PVP,40 mL乙二醇和0.025 g AgCl混合溶液在油浴中剧烈搅拌加热至175 ℃,搅拌10 min ~ 0.5 h,直至溶液变成珠光色;②取出混合溶液并冷却至室温,以转速2 000 r/min、持续时间30 min,离心4次,得到Ag NWs.

    采用激光直写方式制备Cu-Ag纳米复合薄膜(图1). ①采用激光直写技术制备Cu薄膜;②将200 μL制备的Ag NWs溶液涂覆在铜薄膜上,并在50 ℃下干燥约10 min;③采用蛇形路径进行激光直写,激光功率约为1.2 W;④用去离子水洗涤薄膜以除去未反应的溶液,在空气中干燥,得到Cu-Ag导电薄膜.

    图  1  激光直写制备 Cu-Ag 薄膜过程示意图
    Figure  1.  Process of fabricating composite thin films by laser direct writing

    采用X射线粉末衍射仪(XRD, Bruker D8 Advance, Gemany)对所制备铜基复合薄膜的物相成分进行表征,测试采用铜靶,扫描速度为8 °/min,扫描范围为10° ~ 90°. 基于XRD图谱的Jade 6.5v对成分进行了半定量分析,采用X射线光电子能谱仪(XPS, K-Alpha, ULVAC-PHI-5000 VPIII, Japan)表征铜基复合薄膜各元素价态,测试采用Al靶,所有XPS谱图均采用C 1s峰(284.8 eV)校准,采用光学显微镜(OM, Carl Zeiss (Axio Scope. A1), Germany)、扫描电子显微镜(SEM, Merlin Compact, Germany)及附带能谱分析仪(EDS, Be4-U92)对直写薄膜的微观形貌进行分析,采用透射电子显微镜(HRTEM, JEOL 2100, Japan)对所得结构的纳观特征进行表征.

    所有电性能评估均使用Keithley 2400万源表进行,热扩散系数由激光热导率仪(LFA 457,Netzsch. Ltd,Gemany)测量,比热容采用差示扫描量热仪测定,通过烘箱调节环境温度,评价热稳定性,采用红外热成像仪(varioCAM HD, infra TEC, Germany, ±1.5%)对制得的铜基/聚合物复合薄膜在散热应用过程中的温度分布进行采集,采用激光导热仪(LFA 457, Netzsch. Ltd, Germany)测量直写结构的热扩散系数,采用差示扫描量热法测试复合薄膜的比热容,复合材料的热导率计算式为

    $$ \lambda=\rho D C $$ (1)

    式中:λ为热导率,单位为W/(m·K);ρ为密度,单位为g/m3D为热扩散系数,单位为m2/s;C为比热容,单位为J/(g·K).

    制备的Cu薄膜和Cu-Ag薄膜如图2所示. 图2c为典型Cu-Ag薄膜光镜形貌. 从图中可以看到明显的条纹结构,这是因为激光呈高斯分布,导致辐照在前驱体薄膜上的激光能量分布不同,同时激光光斑重叠区域能量累积,使得重叠区域的烧结度较高,典型制备薄膜的厚度为 ~ 65 μm(范围为60 ~ 70 μm).

    图  2  Cu和Cu-Ag薄膜数码照片以及Cu-Ag薄膜光镜形貌
    Figure  2.  Images of Cu and Cu-Ag thin films, and OM images of Cu-Ag thin films. (a) image of Cu thin film; (b) image of Cu-Ag thin film; (c) OM images of Cu-Ag thin film

    图3 为复合薄膜的XRD图谱和XPS图.图3a比较了Cu和Cu-Ag薄膜的XRD光谱,在Cu薄膜的XRD光谱中,衍射角2θ为43.4°,50.6°和74.3°处的衍射峰分别对应于Cu的(111),(200)和(220)晶面(PDF#85-1326),衍射角2θ为36.5°处的衍射峰对应Cu2O的(111)晶面(PDF#99-0041).Cu2O的出现是因为在制备过程中Cu被氧化;在Cu-Ag薄膜的XRD图谱中,衍射角2θ为38.1°处的衍射峰对应于Ag的(111)晶面(PDF#=89-3722),基于相对峰强度的成分半定量分析表明Ag的重量很小.图3b列出了Cu-Ag的XPS光谱,在Cu 2p3/2图谱中所观察到的主峰位于932.03 eV,对应于Cu和Cu2O[21](二者峰位置重合),证实结构中Cu及Cu2O为主要成分,此外图谱中933.8 eV处所观察到Cu2 + 峰表明存在少量二价铜物质,可能是未完全还原的铜离子前驱体残留所致[22].在Ag 3d光谱中,367.9 和373.9 eV处的结合能峰对应于Ag[23].在O 1s光谱中,530.03 和531.3 eV处的峰值分别对应于Cu2O [22]和C=O[24],533.2 eV处的峰值属于C—O键[22].

    图  3  复合薄膜的XRD图谱和XPS图
    Figure  3.  XRD spectra and XPS spectra of different composite thin films. (a) XRD spectra of Cu and Cu-Ag thin films; (b) Cu 2p3/2 spectra; (c) Ag 3d spectra; (d) O 1s spectra

    图4为Cu和Cu-Ag薄膜的SEM形貌. 可以看到,通过激光直写技术制备的薄膜呈现多孔结构,在铜球表面观察到的一层透明薄膜可能是碳或不完全分解的聚合物(图4b);图4c是Cu-Ag纳米复合材料的SEM图像,结果表明Ag NWs均匀地涂覆在Cu薄膜上,在激光照射下,Ag NWs发生断裂,并与铜纳米颗粒烧结;Cu和Ag的EDS图(图5)显示复合薄膜的主要成分是Cu,并且Ag NWs均匀分布在复合薄膜中.

    图  4  Cu薄膜和Cu-Ag薄膜的SEM形貌
    Figure  4.  SEM images of Cu and Cu-Ag thin films. (a) SEM images of Cu thin films; (b) SEM image of lasal microstructure about Cu thin films; (c) SEM images of Cu-Ag thin films
    图  5  Cu-Ag薄膜的EDS图谱
    Figure  5.  EDS mapping images of Cu-Ag thin films

    图6是Cu-Ag复合薄膜的HRTEM图片.从图6a中可以看出,复合薄膜中同时存有Cu和Cu2O.晶格间距为0.302 nm对应于Cu2O的(110)面,0.208 nm的晶格间距对应Cu的(111)面,从图中还可以看到明显的烧结颈,说明激光不仅起到还原铜纳米颗粒的作用,且将进一步原位连接铜纳米颗粒.图6b是典型的Ag NWs结构,可以看到纳米线周围覆盖有一层透明薄膜,可能是未完全分解的有机物,进一步放大,有机物壳的厚度约为几十纳米(图6c);图6d是典型的Cu-Ag连接结构,晶格间距0.239 nm对应Ag的(111)面,0.248 nm对应Cu2O的(111)面,从图中可以看到有明显的Cu-Ag连接界面,说明Ag NWs和还原出的铜颗粒在二次激光辐照下发生连接. 图6b图6d说明在激光辐照下,前驱体溶液中的Cu2 + 先被还原成铜颗粒,与此同时,Ag NWs外有机物壳开始分解. 随着激光热作用的继续,Ag NWs暴露出来的部分和铜颗粒表面发生熔化,进而烧结连接,此外除了连接界面外,Ag NWs和Cu之间部分还存在有机物层,表明有机物未被完全分解.

    图  6  Cu-Ag复合薄膜的TEM图
    Figure  6.  TEM images of Cu-Ag composite thin films: (a) interface of Cu-Cu; (b) typical single Ag nanowire; (c) TEM images of typical single Ag nanowire; (d) interface of Cu-Ag

    采用激光直写技术制备的Cu薄膜和Cu-Ag薄膜的方阻分别为0.42 和0.62 Ω/sq. 通过测量电阻的变化R/R0(R0是原始电阻,R是测量的电阻)研究两种结构的抗氧化能力. 图7为Cu /PI和Cu-Ag/PI复合薄膜的导热特性, 图7a绘制了Cu薄膜和Cu-Ag薄膜在25(室温),80和150 ℃下R/R0随时间的变化.在室温下,Cu膜的电阻在一周内几乎恒定,当温度升高到80 ℃时,由于氧化反应,1天后电阻急剧增加,为原来的3倍;之后电阻增加速度变慢,7天后,电阻变为原始值的7.4倍;150 ℃时,电阻变化与在80 ℃类似,7天后为原始值的13倍,然而对于Cu-Ag薄膜,电阻变化曲线相对平缓,在80 ℃时,7天后的电阻值仅为原始值的2倍左右,150 ℃时为7倍左右.Cu-Ag柔性薄膜这种良好的热稳定性使得其在120 ℃下的柔性电子领域有着广泛的应用[25].

    图  7  Cu /PI和Cu-Ag/PI复合薄膜的导热特性
    Figure  7.  Thermal properties of Cu /PI and Cu-Ag/PI composite thin films. (a) relative resistance changes of Cu and Cu-Ag composite film at different temperatures; (b) thermal diffusion coefficient and thermal conductivity of different materials; (c) thermal images of ceramic heater on Cu-based/PI composite films

    为了研究激光直写制备的柔性铜基薄膜在微电子散热领域的应用,进一步对热导率进行了测量,因为直写的Cu和Cu-Ag膜厚度太薄,所以对Cu /PI和Cu-Ag/PI复合薄膜进行热导率测量. 利用激光闪射法测得两者的热扩散系数分别为1.41 和1.66 mm2/s,利用式(1)计算得出热导率分别为1.82和3.06 W/(m·K),计算结果表明Ag的引入可以将热导率提高84%,这两种聚合物复合材料的热导率是纯PI热导率的4 ~ 7倍(PI的热导率约为0.1 ~ 0.4 W/(m·K))[26-27],说明在PI上激光直写Cu和Cu-Ag薄膜都可以大幅提高PI的导热性能,而且Cu-Ag材料的导热性能更好. 纯银的电导率为6.031 × 107 S/m,热导率 429 W/(m· K),纯铜的电导率为5.714 × 107 S/m,热导率为386.4 W/(m· K),所以Cu-Ag复合结构的热导率要高于纯铜,因此在直写铜结构中引入银组分将提高其热导率,从而所得Cu-Ag/PI复合薄膜的导热性能也要优于Cu/PI复合薄膜.

    为了进一步表征Cu/PI和Cu-Ag/PI复合薄膜的导热性能,做了如图7c演示. 将商用加热陶瓷片固定在复合薄膜中心位置上,周围用硅脂进行密封,尽量减少周围环境的散热. 用直流电源给陶瓷片施加5 V的电压,利用红外热成像相机采集陶瓷片表面温度的变化数值,并记录最终稳定温度. Cu/PI薄膜上的陶瓷加热片最高温度为249 ℃,而Cu-Ag/PI薄膜上的陶瓷加热片最高温度为239 ℃,进一步说明Cu-Ag/PI薄膜的传热性能要优于Cu/PI薄膜.

    (1) 通过激光直写技术在PI柔性基底上制备了导电Cu和Cu-Ag薄膜,Cu薄膜和Cu-Ag薄膜的方阻分别为0.42 Ω/sq和0.62 Ω/sq.

    (2) 与Cu膜相比,Cu-Ag薄膜表现出优异的抗氧化性. Cu-Ag /PI(3.06 W/(m·K))柔性复合薄膜的热导率要优于Cu /PI薄膜(1.82 W/(m·K)),具有成为电子产品散热材料的潜力.

  • 图  1   激光直写制备 Cu-Ag 薄膜过程示意图

    Figure  1.   Process of fabricating composite thin films by laser direct writing

    图  2   Cu和Cu-Ag薄膜数码照片以及Cu-Ag薄膜光镜形貌

    Figure  2.   Images of Cu and Cu-Ag thin films, and OM images of Cu-Ag thin films. (a) image of Cu thin film; (b) image of Cu-Ag thin film; (c) OM images of Cu-Ag thin film

    图  3   复合薄膜的XRD图谱和XPS图

    Figure  3.   XRD spectra and XPS spectra of different composite thin films. (a) XRD spectra of Cu and Cu-Ag thin films; (b) Cu 2p3/2 spectra; (c) Ag 3d spectra; (d) O 1s spectra

    图  4   Cu薄膜和Cu-Ag薄膜的SEM形貌

    Figure  4.   SEM images of Cu and Cu-Ag thin films. (a) SEM images of Cu thin films; (b) SEM image of lasal microstructure about Cu thin films; (c) SEM images of Cu-Ag thin films

    图  5   Cu-Ag薄膜的EDS图谱

    Figure  5.   EDS mapping images of Cu-Ag thin films

    图  6   Cu-Ag复合薄膜的TEM图

    Figure  6.   TEM images of Cu-Ag composite thin films: (a) interface of Cu-Cu; (b) typical single Ag nanowire; (c) TEM images of typical single Ag nanowire; (d) interface of Cu-Ag

    图  7   Cu /PI和Cu-Ag/PI复合薄膜的导热特性

    Figure  7.   Thermal properties of Cu /PI and Cu-Ag/PI composite thin films. (a) relative resistance changes of Cu and Cu-Ag composite film at different temperatures; (b) thermal diffusion coefficient and thermal conductivity of different materials; (c) thermal images of ceramic heater on Cu-based/PI composite films

  • [1]

    Pang C, Koo J H, Nguyen A, et al. Highly skin-conformal microhairy sensor for pulse signal amplification[J]. Advanced Materials, 2015, 27: 634 − 640. doi: 10.1002/adma.201403807

    [2]

    Fang B, Gu A, Wang G, et al. Sliver oxide nanowalls grown on Cu substrate as an enzymeless glucose sensor[J]. ACS Applied Materials & Interfaces, 2009, 1(12): 2829 − 2834.

    [3]

    Fortier A, Pecht M G. A perspective of the PIC report on lead-free electronics in military/aerospace applications[J]. Microelectronics Reliability, 2017, 69: 66 − 70. doi: 10.1016/j.microrel.2017.01.001

    [4]

    Wong C P, Bpllampally Raja S. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging[J]. Journal of Applied Polymer Science, 1999, 74: 3396 − 3403. doi: 10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3

    [5]

    Zhou W, Qi S, Li H, et al. Study on insulating thermal conductive BN/HDPE composites[J]. Thermochimica Acta, 2007, 452: 36 − 42. doi: 10.1016/j.tca.2006.10.018

    [6]

    Krupa I, Novák I, Chodák I. Electrically and thermally conductive polyethylene graphite composites and their mechanical properties[J]. Synthetic Materials, 2004, 145: 245 − 252. doi: 10.1016/j.synthmet.2004.05.007

    [7]

    Xu Y, Chung D D L, Mroz C. Thermally conducting aluminum nitride polymer-matrix composites[J]. Composites:Part A, 2001, 32: 1749 − 1757. doi: 10.1016/S1359-835X(01)00023-9

    [8]

    Wu Z, Xu C, Ma C, et al. Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites[J]. Advanced Materials, 2019, 31(19): 1900199. doi: 10.1002/adma.201900199

    [9]

    Han H, Zhang Y, Wang N, et al. Functionalization mediates heat transport in graphene nanoflakes[J]. Nature Communications, 2016, 7: 11281. doi: 10.1038/ncomms11281

    [10]

    Mizoshiri M, Ito Y, Arakane S, et al. Direct fabrication of Cu/Cu2O composite micro-temperature sensor using femto-second laser reduction patterning[J]. Japanese Journal of Applied Physics, 2016, 55(6S1): 06GP05. doi: 10.7567/JJAP.55.06GP05

    [11]

    Bai S, Zhang S, Zhou W, et al. Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors[J]. Nano-Micro Letters, 2017, 9: 42. doi: 10.1007/s40820-017-0139-3

    [12]

    Peng P, Li L, He P, et al. One-step selective laser patterning of copper/ graphene flexible electrodes[J]. Nano-technology, 2019, 30(18): 185301.

    [13]

    Liao J, Guo W, Peng P. Direct laser writing of copper-graphene composites for flexible electronics[J]. Optics and Lasers in Engineering, 2021, 142: 106605. doi: 10.1016/j.optlaseng.2021.106605

    [14]

    Yao Y, Guo W, Zhou X, et al. Thermal properties of laser-fabricated copper-carbon composite films on polyimide substrate[J]. Advanced Engineering Materials, 2021, 23: 2100623. doi: 10.1002/adem.202100623

    [15]

    Kwon J, Cho H, Suh Y D, et al. Flexible and transparent Cu electronics by low-temperature acid-assisted laser processing of Cu nanoparticles[J]. Advanced Materials Technologies, 2017, 2(2): 1600222. doi: 10.1002/admt.201600222

    [16] 廖嘉宁, 王欣达, 周兴汶, 等. 飞秒激光直写铜微电极研究[J]. 中国激光, 2019, 46(10): 198 − 203.

    Liao Jianing, Wang Xinda, Zhou Xingwen, et al. Femtosecond laser direct writing of copper microelectrodes[J]. Chinese Journal of Lasers, 2019, 46(10): 198 − 203.

    [17]

    Li J, Mayer J, Colgan E G, et al. Oxidation and protection in copper and copper alloy thin films[J]. Journal of Applied Physics, 1991, 70: 2820. doi: 10.1063/1.349344

    [18]

    Moram S S B, Byram C, S Venugopal R. Explosives sensing using Ag-Cu alloy nanoparticles synthesized by femtosecond laser ablation and irradiation[J]. RSC Advances, 2019, 9: 1517. doi: 10.1039/C8RA08462A

    [19]

    Yao Y, Guo W, Hui Z, et al. Laser fabricated Cu2O-CuO/Ag nanocomposite films for SERS application[J]. Chemistry Select, 2022, 7: e20210435.

    [20]

    Navas M P, Soni R K. Laser-generated bimetallic Ag-Au and Ag-Cu core-shell nanoparticles for refractive index sensing[J]. Plasmonics, 2015, 10(3): 681 − 690. doi: 10.1007/s11468-014-9854-5

    [21]

    Khattak G D, Mekki A, Gondal M A. Effect of laser irradiation on the structure and valence states of copper in Cu-phosphate glass by XPS studies[J]. Applied Surface Science, 2010, 256(11): 3630 − 3635. doi: 10.1016/j.apsusc.2009.12.167

    [22]

    Zhou X, Guo W, Fu J, et al. Laser writing of Cu/CuxO integrated structure on flexible substrate for humidity sensing[J]. Applied Surface Science, 2019, 494: 684 − 690. doi: 10.1016/j.apsusc.2019.07.159

    [23]

    Yu D H, Yu X, Wang C, et al. Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocata-lytic properties[J]. ACS Applied Materials & Interfaces, 2012, 4: 2781 − 2787.

    [24]

    Miyayama T, Sanada N, Iida S, et al. The effect of angle of incidence to low damage sputtering of organic polymers using a C60 ion beam[J]. Applied Surface Science, 2008, 255(4): 951 − 953. doi: 10.1016/j.apsusc.2008.05.265

    [25]

    Hoppe E C, Lazzari M, Pardiñas-Blanco I, et al. One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent[J]. Langmuir, 2006, 22: 7027 − 7034. doi: 10.1021/la060885d

    [26]

    Dai W, Yu J, Liu Z, et al. Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers[J]. Composites Part A:Applied Science and Manufacturing, 2015, 76: 73 − 81. doi: 10.1016/j.compositesa.2015.05.017

    [27]

    Xiao T, Fan X, Fan D, et al. High thermal conductivity and low absorptivity/emissivity properties of transparent fluorinated polyimide films[J]. Polymer Bulletin, 2017, 74(11): 4561 − 4575. doi: 10.1007/s00289-017-1974-6

图(7)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  28
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 网络出版日期:  2023-11-30
  • 刊出日期:  2023-12-24

目录

/

返回文章
返回