Thermal conductivity of flexible Cu-Ag composite thin films by laser direct writing
-
摘要:
随着柔性电子产品对高效热管理的需求不断增长,近年来制备高导电性柔性薄膜越来越受到人们的广泛关注. 以聚酰亚胺(PI)为基底,采用激光直写技术制备铜(Cu)和铜-银(Cu-Ag)薄膜,并对制备的Cu-Ag薄膜进行了物相分析和结构表征. 结果表明,铜纳米颗粒和银纳米线在激光辐照的作用下表面局部熔化,进而烧结;通过比较直写制备的铜薄膜和Cu-Ag薄膜在不同温度下7 天内电阻的变化,得出银的引入提高了复合材料整体的抗氧化性;对Cu/PI和Cu-Ag/PI两种复合材料的热扩散系数和热导率进行测试,得出银的引入提高了复合薄膜的热导率,Cu-Ag/PI薄膜表现出比Cu/PI薄膜更好的热性能. 为制备具有良好热稳定性的Cu /PI和Cu-Ag /PI复合材料提供了一种快速简便、经济节约的方法.
Abstract:With the increasing demand of flexible electronic products for efficient thermal management, the preparation of flexible thin films with high conductivity has attracted more and more attention in recent years. Cu and Cu-Ag thin films are prepared by laser direct writing technique on polyimide (PI) substrate. The phase analysis and structure characterization of the two films show that the copper nanoparticles and silver nanowires are sintered by partial melting of their surface under laser irradiation. By comparing the resistance changes of prepared copper and Cu-Ag thin films at different temperatures for 7 days, it is concluded that the introduced silver improves the overall oxidation resistance of the composites. The thermal diffusivity and thermal conductivity of the two composites are tested, and it is found that the thermal conductivity of Cu-Ag/PI is significantly improved, showing better thermal performance than Cu/PI. This work provides a quick, simple and economical method for the preparation of Cu/PI and Cu-Ag/PI composites with good thermal stability.
-
Keywords:
- laser direct writing /
- Cu thin film /
- Cu-Ag thin film /
- thermal conductivity
-
-
图 7 Cu /PI和Cu-Ag/PI复合薄膜的导热特性
Figure 7. Thermal properties of Cu /PI and Cu-Ag/PI composite thin films. (a) relative resistance changes of Cu and Cu-Ag composite film at different temperatures; (b) thermal diffusion coefficient and thermal conductivity of different materials; (c) thermal images of ceramic heater on Cu-based/PI composite films
-
[1] Pang C, Koo J H, Nguyen A, et al. Highly skin-conformal microhairy sensor for pulse signal amplification[J]. Advanced Materials, 2015, 27: 634 − 640. doi: 10.1002/adma.201403807
[2] Fang B, Gu A, Wang G, et al. Sliver oxide nanowalls grown on Cu substrate as an enzymeless glucose sensor[J]. ACS Applied Materials & Interfaces, 2009, 1(12): 2829 − 2834.
[3] Fortier A, Pecht M G. A perspective of the PIC report on lead-free electronics in military/aerospace applications[J]. Microelectronics Reliability, 2017, 69: 66 − 70. doi: 10.1016/j.microrel.2017.01.001
[4] Wong C P, Bpllampally Raja S. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging[J]. Journal of Applied Polymer Science, 1999, 74: 3396 − 3403. doi: 10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3
[5] Zhou W, Qi S, Li H, et al. Study on insulating thermal conductive BN/HDPE composites[J]. Thermochimica Acta, 2007, 452: 36 − 42. doi: 10.1016/j.tca.2006.10.018
[6] Krupa I, Novák I, Chodák I. Electrically and thermally conductive polyethylene graphite composites and their mechanical properties[J]. Synthetic Materials, 2004, 145: 245 − 252. doi: 10.1016/j.synthmet.2004.05.007
[7] Xu Y, Chung D D L, Mroz C. Thermally conducting aluminum nitride polymer-matrix composites[J]. Composites:Part A, 2001, 32: 1749 − 1757. doi: 10.1016/S1359-835X(01)00023-9
[8] Wu Z, Xu C, Ma C, et al. Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites[J]. Advanced Materials, 2019, 31(19): 1900199. doi: 10.1002/adma.201900199
[9] Han H, Zhang Y, Wang N, et al. Functionalization mediates heat transport in graphene nanoflakes[J]. Nature Communications, 2016, 7: 11281. doi: 10.1038/ncomms11281
[10] Mizoshiri M, Ito Y, Arakane S, et al. Direct fabrication of Cu/Cu2O composite micro-temperature sensor using femto-second laser reduction patterning[J]. Japanese Journal of Applied Physics, 2016, 55(6S1): 06GP05. doi: 10.7567/JJAP.55.06GP05
[11] Bai S, Zhang S, Zhou W, et al. Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors[J]. Nano-Micro Letters, 2017, 9: 42. doi: 10.1007/s40820-017-0139-3
[12] Peng P, Li L, He P, et al. One-step selective laser patterning of copper/ graphene flexible electrodes[J]. Nano-technology, 2019, 30(18): 185301.
[13] Liao J, Guo W, Peng P. Direct laser writing of copper-graphene composites for flexible electronics[J]. Optics and Lasers in Engineering, 2021, 142: 106605. doi: 10.1016/j.optlaseng.2021.106605
[14] Yao Y, Guo W, Zhou X, et al. Thermal properties of laser-fabricated copper-carbon composite films on polyimide substrate[J]. Advanced Engineering Materials, 2021, 23: 2100623. doi: 10.1002/adem.202100623
[15] Kwon J, Cho H, Suh Y D, et al. Flexible and transparent Cu electronics by low-temperature acid-assisted laser processing of Cu nanoparticles[J]. Advanced Materials Technologies, 2017, 2(2): 1600222. doi: 10.1002/admt.201600222
[16] 廖嘉宁, 王欣达, 周兴汶, 等. 飞秒激光直写铜微电极研究[J]. 中国激光, 2019, 46(10): 198 − 203. Liao Jianing, Wang Xinda, Zhou Xingwen, et al. Femtosecond laser direct writing of copper microelectrodes[J]. Chinese Journal of Lasers, 2019, 46(10): 198 − 203.
[17] Li J, Mayer J, Colgan E G, et al. Oxidation and protection in copper and copper alloy thin films[J]. Journal of Applied Physics, 1991, 70: 2820. doi: 10.1063/1.349344
[18] Moram S S B, Byram C, S Venugopal R. Explosives sensing using Ag-Cu alloy nanoparticles synthesized by femtosecond laser ablation and irradiation[J]. RSC Advances, 2019, 9: 1517. doi: 10.1039/C8RA08462A
[19] Yao Y, Guo W, Hui Z, et al. Laser fabricated Cu2O-CuO/Ag nanocomposite films for SERS application[J]. Chemistry Select, 2022, 7: e20210435.
[20] Navas M P, Soni R K. Laser-generated bimetallic Ag-Au and Ag-Cu core-shell nanoparticles for refractive index sensing[J]. Plasmonics, 2015, 10(3): 681 − 690. doi: 10.1007/s11468-014-9854-5
[21] Khattak G D, Mekki A, Gondal M A. Effect of laser irradiation on the structure and valence states of copper in Cu-phosphate glass by XPS studies[J]. Applied Surface Science, 2010, 256(11): 3630 − 3635. doi: 10.1016/j.apsusc.2009.12.167
[22] Zhou X, Guo W, Fu J, et al. Laser writing of Cu/CuxO integrated structure on flexible substrate for humidity sensing[J]. Applied Surface Science, 2019, 494: 684 − 690. doi: 10.1016/j.apsusc.2019.07.159
[23] Yu D H, Yu X, Wang C, et al. Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocata-lytic properties[J]. ACS Applied Materials & Interfaces, 2012, 4: 2781 − 2787.
[24] Miyayama T, Sanada N, Iida S, et al. The effect of angle of incidence to low damage sputtering of organic polymers using a C60 ion beam[J]. Applied Surface Science, 2008, 255(4): 951 − 953. doi: 10.1016/j.apsusc.2008.05.265
[25] Hoppe E C, Lazzari M, Pardiñas-Blanco I, et al. One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent[J]. Langmuir, 2006, 22: 7027 − 7034. doi: 10.1021/la060885d
[26] Dai W, Yu J, Liu Z, et al. Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers[J]. Composites Part A:Applied Science and Manufacturing, 2015, 76: 73 − 81. doi: 10.1016/j.compositesa.2015.05.017
[27] Xiao T, Fan X, Fan D, et al. High thermal conductivity and low absorptivity/emissivity properties of transparent fluorinated polyimide films[J]. Polymer Bulletin, 2017, 74(11): 4561 − 4575. doi: 10.1007/s00289-017-1974-6
-
期刊类型引用(3)
1. 晏杰,胡水莲,张维维,白鹏飞,李涛. GTAW堆焊工艺参数对2A12铝合金板堆焊焊缝组织和力学性能的影响. 轻合金加工技术. 2024(09): 46-52 . 百度学术
2. 徐心洁,林文钦,胡成江,路寒,蒋洪俊. LY12角片断裂分析. 失效分析与预防. 2021(02): 139-142 . 百度学术
3. 杨帅,邢彦锋,刘文杰. 基于超声清洗的CMT焊缝质量分析. 上海工程技术大学学报. 2020(03): 284-289 . 百度学术
其他类型引用(1)