Joining mechanism and element distribution in laser micro-welding of NiTi-Cu dissimilar alloys
-
摘要:
为实现NiTi形状记忆合金电致热驱动的功能特性,采用激光微连接技术对NiTi丝和铜板异种材料进行焊接,并利用光学显微镜、能谱分析仪等手段分析连接界面的微观结构和元素分布. 基于ANSYS Fluent软件建立NiTi-Cu异种材料激光微连接三维计算流体力学仿真模型,分析了NiTi-Cu激光微连接过程中的温度场、流场演变和元素传输规律. 结果表明,NiTi-Cu激光微连接过程主要分为激光在NiTi丝中的“钻孔”过程、对铜板的预热过程和在铜板中的“钻孔”过程. Ni,Ti,Cu元素混合主要发生于激光对铜板的“钻孔”过程中,元素在金属蒸气反冲压力和Marangoni涡流的驱动下相互混合,Cu元素进入熔池易形成低硬度的Cu-Ti金属间化合物,降低了脆性的Ni-Ti金属间化合物形成的可能性. 试验和仿真结果吻合较好,为优化NiTi-Cu异种材料的激光微连接工艺提供了重要的理论支撑.
-
关键词:
- NiTi形状记忆合金 /
- 激光微链接 /
- 异种金属 /
- 计算流体力学 /
- 元素分布
Abstract:To satisfy the thermo-driven requirements of NiTi shape memory alloys in different industrial applications, NiTi wire and Cu plate were welded by laser micro-welding technology. The microstructure and element distribution of the weld were experimentally studied using optical microscopy (OM) and energy dispersive spectrometer (EDS). Based on ANSYS Fluent software, a three-dimensional (3D) computational fluid dynamics (CFD) model for laser micro-welding of NiTi-Cu dissimilar alloys was established to analyze the evolutions of temperature and fluid flow fields and the element transport mechanism. The results indicate that the process of laser micro-welding can be mainly divided into 3 procedures, namely the "drilling" procedure of laser in NiTi wire, the preheating procedure of laser energy on Cu plate, and the "drilling" procedure of laser in Cu plate. The mixing of Ni, Ti, and Cu elements mainly occurs in the drilling process of laser in Cu plate, where the elements are mixing well under the driven of the metal vapor recoil pressure and Marangoni vortex. The Cu content in the molten pool is helpful to form low hardness Cu-Ti intermetallic compounds (IMCs), reducing the possibility of the formation of brittle Ni-Ti IMCs. The experimental and simulation results are in good agreement. The research provides important theoretical support for optimization of the laser micro-welding of NiTi-Cu dissimilar alloys.
-
-
表 1 NiTi和Cu热物理参数
Table 1 Thermophysical parameters of NiTi and Cu
材料 密度
ρ/(kg·m−3)固相热导率
λ1/(W·m−1·K−1)液相热导率
λ2/ (W·m−1·K−1)固相比热容
C1/( J·kg−1·K−1)液相比热容
C2/( J·kg−1·K−1)NiTi 6 450 13 21.5 489 841 Cu 8 960 385 157.02 481 531 材料 动力粘度
μ/( kg·m−1·s−1)固相温度
T1/ K液相温度
T2/ K蒸发温度
T3/ K熔化潜热
L /(105J·kg−1)NiTi 0.005 74 1 553 1 583 3 033 2.42 Cu 0.004 03 1 356 1 357 2 853 2.05 -
[1] Oliveira J P, Miranda R M, Braz Fernandes F M. Welding and joining of niti shape memory alloys: a review[J]. Progress in Materials Science, 2017, 88: 412 − 466. doi: 10.1016/j.pmatsci.2017.04.008
[2] Ke W, Oliveira J P, Cong B, et al. Multi-layer deposition mechanism in ultra high-frequency pulsed wire arc additive manufacturing (WAAM) of NiTi shape memory alloys[J]. Additive Manufacturing, 2022, 50: 102513. doi: 10.1016/j.addma.2021.102513
[3] Mehrpouya M, Gisario A, Elahinia M. Laser welding of NiTi shape memory alloy: A review[J]. Journal of Manufacturing Processes, 2018, 31: 162 − 186. doi: 10.1016/j.jmapro.2017.11.011
[4] 许博, 王颖, 张萌, 等. Nb合金化对电弧增材制造NiTi基形状记忆合金的影响[J]. 焊接学报, 2021, 42(8): 1 − 7. Xu Bo, Wang Ying, Zhang Meng, et al. Effect of Nb alloying on wire arc additive manufacturing NiTi-based shape memory alloys[J]. Transactions of the China Welding Institution, 2021, 42(8): 1 − 7.
[5] Niu H, Jiang H C, Zhao M J, et al. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding[J]. Journal of Materials Science & Technology, 2021, 61: 16 − 24.
[6] Gao F Y, Mu Z Z, Ma Z W, et al. Fine microstructure characterization of titanium alloy laser narrow gap welded joint[J]. China Welding, 2021, 30(3): 31 − 38.
[7] Zhong Y, Xie J, Chen Y, et al. Microstructure and mechanical properties of micro laser welding NiTiNb/Ti6Al4V dissimilar alloys lap joints with nickel interlayer[J]. Materials Letters, 2022, 306: 130896. doi: 10.1016/j.matlet.2021.130896
[8] 李胜利, 任春雄, 杭春进, 等. 极端热冲击和电流密度耦合Sn-3.0Ag-0.5Cu焊点组织演变[J]. 机械工程学报, 2022, 58(2): 291 − 299. doi: 10.3901/JME.2022.02.291 Li Shengli, Ren Chunxiong, Hang Chunjin, et al. Microstructure evolution of Sn-3.0Ag-0.5Cu solder joints under extreme temperature changes and current stressing[J]. Journal of Mechanical Engineering, 2022, 58(2): 291 − 299. doi: 10.3901/JME.2022.02.291
[9] Zeng Z, Oliveira J P, Yang M, et al. Functional fatigue behavior of NiTi-Cu dissimilar laser welds[J]. Materials & Design, 2017, 114: 282 − 287.
[10] Shamsolhodaei A, Oliveira JP, Schell N, et al. Controlling intermetallic compounds formation during laser welding of NiTi to 316L stainless steel[J]. Intermetallics, 2020, 116: 106656. doi: 10.1016/j.intermet.2019.106656
[11] Sun Q, Chen J, Wang X, et al. Study on weld formation and segregation mechanism for dissimilar pulse laser welding of NiTi and Cu wires[J]. Optics and Laser Technology, 2021, 140: 107071. doi: 10.1016/j.optlastec.2021.107071
[12] 柯文超, 从保强, 祁泽武, 等. NiTi形状记忆合金电弧熔融涂覆及微连接机理[J]. 机械工程学报, 2022, 58(2): 176 − 184. doi: 10.3901/JME.2022.02.176 Ke Wenchao, Cong Baoqiang, Qi Zewu, et al. Arc-fused coating process and micro-joining mechanism of NiTi shape memory alloys[J]. Journal of Mechanical Engineering, 2022, 58(2): 176 − 184. doi: 10.3901/JME.2022.02.176
[13] Zhang K, Liu F, Tan C, et al. Effect of heat input modes on microstructure, mechanical properties and porosity of laser welded NiTi-316L joints: A comparative study[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2022, 848: 143426. doi: 10.1016/j.msea.2022.143426
[14] Ke W, Zeng Z, Oliveira J P, et al. Heat transfer and melt flow of keyhole, transition and conduction modes in laser beam oscillating welding[J]. International Journal of Heat and Mass Transfer, 2023, 203: 123821. doi: 10.1016/j.ijheatmasstransfer.2022.123821
[15] Mayeli P, Sheard G J. Buoyancy-driven flows beyond the Boussinesq approximation: A brief review[J]. International Communications in Heat and Mass Transfer, 2021, 125: 105316. doi: 10.1016/j.icheatmasstransfer.2021.105316
[16] 宫建锋, 李俐群, 孟圣昊. 圆形摆动激光对5A06铝合金激光焊接熔池流动行为的影响分析[J]. 焊接学报, 2022, 43(11): 50 − 55. Gong Jianfeng, Li Liqun, Meng Shenghao. Influence of circular oscillating laser on the melt flow behavior during 5A06 aluminum alloy laser welding[J]. Transactions of the China Welding Institution, 2022, 43(11): 50 − 55.
[17] Gao S, Feng Y, Wang J, et al. Molten pool characteristics of a nickel-titanium shape memory alloy for directed energy deposition[J]. Optics & Laser Technology, 2021, 142: 107215.
[18] Chouhan A, Hesselmann M, Toenjes A, et al. Numerical modelling of in-situ alloying of Al and Cu using the laser powder bed fusion process: A study on the effect of energy density and remelting on deposited track homogeneity[J]. Additive Manufacturing, 2022, 59: 103179. doi: 10.1016/j.addma.2022.103179
[19] Hozoorbakhsh A, Hamdi M, Sarhan A, et al. CFD modelling of weld pool formation and solidification in a laser micro-welding process[J]. International Communications in Heat and Mass Transfer, 2019, 101: 58 − 69. doi: 10.1016/j.icheatmasstransfer.2019.01.001
[20] Lee J Y, Ko S H, Farson D F, et al. Mechanism of keyhole formation and stability in stationary laser welding[J]. Journal of Physics D-Applied Physics, 2002, 35(13): 1570 − 1576. doi: 10.1088/0022-3727/35/13/320
[21] Lee Y S, Zhang W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion[J]. Additive Manufacturing, 2016, 12: 178 − 188. doi: 10.1016/j.addma.2016.05.003
[22] Fuhrich T, Berger P, Hügel H. Marangoni effect in laser deep penetration welding of steel[J]. Journal of Laser Application, 2001, 13(5): 178 − 186. doi: 10.2351/1.1404412
[23] Xie X, Zhou J, Long J. Numerical study on molten pool dynamics and solute distribution in laser deep penetration welding of steel and aluminum[J]. Optics and Laser Technology, 2021, 140: 107085. doi: 10.1016/j.optlastec.2021.107085