高级检索

烧结银细观孔隙结构对宏观力学性能的影响

龙旭, 种凯楠, 苏昱太

龙旭, 种凯楠, 苏昱太. 烧结银细观孔隙结构对宏观力学性能的影响[J]. 焊接学报, 2023, 44(12): 15-20, 27. DOI: 10.12073/j.hjxb.20230613005
引用本文: 龙旭, 种凯楠, 苏昱太. 烧结银细观孔隙结构对宏观力学性能的影响[J]. 焊接学报, 2023, 44(12): 15-20, 27. DOI: 10.12073/j.hjxb.20230613005
LONG Xu, CHONG Kainan, SU Yutai. Influence of the mesoscale porous structure features on the macroscale mechanical properties of sintered silver nanoparticles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 15-20, 27. DOI: 10.12073/j.hjxb.20230613005
Citation: LONG Xu, CHONG Kainan, SU Yutai. Influence of the mesoscale porous structure features on the macroscale mechanical properties of sintered silver nanoparticles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 15-20, 27. DOI: 10.12073/j.hjxb.20230613005

烧结银细观孔隙结构对宏观力学性能的影响

基金项目: 国家自然科学基金资助项目(52175148);国家重点实验室基金资助项目2022-JCJQ-LB-006(6142411232212);重庆市自然科学基金资助项目(CSTB2022NSCQ-MSX0574).
详细信息
    作者简介:

    龙旭,博士,副教授,博士研究生导师;主要研究方向为先进电子封装力学;Email: xulong@nwpu.edu.cn

    通讯作者:

    苏昱太,博士,副教授;Email: suyutai@nwpu.edu.cn

  • 中图分类号: TG 492

Influence of the mesoscale porous structure features on the macroscale mechanical properties of sintered silver nanoparticles

  • 摘要:

    为研究烧结纳米银材料细观孔隙结构对宏观力学性能的影响,首先利用高斯滤波算法和分位数切割函数生成具有不同孔隙率(0.1,0.2和0.3)的代表性微元(RVE). 通过对RVE施加周期性边界条件,获得其单轴拉伸力学性能,使用Abaqus软件建立了由烧结纳米银颗粒制成的搭接接头的宏观模型模拟剪切试验,烧结层的材料属性与预测的RVE的弹塑性应力-应变曲线保持一致. 结果表明,随着孔隙率的减小,RVE模型的弹性模量和屈服强度增大;值得注意的是,随着应变的增大,塑性变形最后阶段的应力呈现较大的下降趋势,使得材料更容易受到损伤. 通过比较宏观模型的剪切模拟,可以观察到孔隙率的变化对烧结纳米银颗粒的剪切变形有显著影响,具体而言,随着孔隙率的增加,孔隙部位更容易出现裂纹并扩展,形成多个孔隙的贯通裂纹,从而导致烧结银的抗剪强度降低.

    Abstract:

    In order to investigate the influence of the mesoscale porous structure of sintered silver nanoparticles on the macroscale mechanical properties, representative volume elements (RVEs) with different porosities (0.1, 0.2 and 0.3) are firstly generated by using the Gaussian filtering algorithm and the cutting quantile functions. The uniaxially tensile mechanical properties of the RVEs are obtained by applying periodic boundary conditions. A macroscale model of the lap joint made of sintered silver nanoparticles is then established using Abaqus software to simulate the shear test. The material properties of the sintered layer are consistent with the predicted elastoplastic stress–strain curves of the RVE. The findings reveal that as the porosity decreases, the elastic modulus and yield strength of the RVE model increase. However, it is worth noting that the stress at the final stage of the plastic deformation demonstrates a significant decreasing trend as strain increases, rendering the material more susceptible to damage. Furthermore, through a comparison of shear simulation results of the macroscale model, it can be observed that porosity variations have a notable impact on the shear deformation of sintered silver nanoparticles. Specifically, as the porosity increases, the likelihood of crack initiation and propagation in porous regions rises. This leads to the coalescence of cracks among multiple pores, consequently resulting in the reduction of shear strength of the sintered silver nanoparticles.

  • SiC陶瓷因具有高强度与硬度、低密度与热膨胀系数以及良好的抗氧化性等优异性能而广泛应用于核电、电子信息、机械等领域. 由于SiC陶瓷脆性大、硬度高且导电性差,因此难以形成大尺寸和复杂形状的构件,导致其应用受到限制. 为了满足其应用需求,常需对SiC陶瓷进行连接,考虑其物理性质,钎焊是最合适的方法之一[1].

    SiC陶瓷钎焊时,常用的钎料是Ag-Cu-Ti钎料,利用Ti元素的活化作用促进钎料在陶瓷表面的润湿,Ag元素良好的延展性释放由钎缝与陶瓷母材之间热膨胀系数差异带来的残余应力,从而实现陶瓷的钎焊连接[2-3]. Song等人[4]采用Ag-26.7Cu-4.5Ti粉末钎料直接钎焊SiC陶瓷,所得接头的抗剪强度为16 MPa;当钎料中添加质量分数为1.0%的碳纳米管后,生成的TiC和Ti5Si3减少了接头的残余应力,接头抗剪强度提高到38 MPa. Wang等人[5]采用AgCu/泡沫Cu/AgCu/Ti多层填充层对Inconel 600和ZrB2-SiC复合陶瓷进行钎焊,利用生成的TiC释放接头残余应力,泡沫Cu阻挡Ti-Ni金属间化合物形成,接头最高抗剪强度为198 MPa. Zhang等人[6]分别采用AgCuTi和AgCuTi/多孔SiC陶瓷复合钎料对ZrB2-SiC-C和GH99合金进行钎焊,接头的抗剪强度分别为39和102 MPa,通过AgCuTi/多孔SiC陶瓷复合钎料的应用降低接头残余应力,提高接头的抗剪强度. Li等人[7]利用AgCuTi + B4C钎料降低SiC/Nb钎焊接头残余应力,接头组织结构为SiC/Ti3SiC2/Ag(s,s) + Cu(s,s) + TiB + TiC/TiCu + Nb(s,s)/Nb,最大抗剪强度为98 MPa. Wang等人[8]采用Ag-V2O5钎料在马弗炉中钎焊SiC陶瓷,利用生成的SiO2提高钎料在陶瓷表面的润湿性,当V2O5的摩尔分数为8%时,所得接头的抗剪强度最大,约为58 MPa. 众多学者采用AgCuTi及其复合钎料对SiC陶瓷进行了钎焊研究,利用生成原位增强相的方式降低接头残余应力,提高接头的抗剪强度,但研究还不够成熟,钎料生产仍面临较大的困难.

    目前AgCuTi钎料的制备方法主要有电弧熔炼和真空熔炼两种. 电弧熔炼受电弧加热范围限制,每次所得钎料的量较少,易出现Ti元素偏聚;真空熔炼虽有优势,但在热轧为薄片过程中因Fe,C等元素的引入恶化钎料性能,无法制备AgCuTi箔带钎料.因此,AgCuTi钎料不仅因富含贵金属Ag而成本较高,且成形困难[9]. 部分研究者开展了适用于陶瓷钎焊的其它体系的钎料研究. Shi等人[10]采用Ag-Zr钎料钎焊ZrC-SiC陶瓷和TiAl,研究了锆含量对接头组织和性能的影响,结果表明,过量的锆会导致裂纹产生,所得接头抗剪强度在锆质量分数为5 %时达到65 MPa. Shi等人[11]研究了在Ni基钎料中添加活性Zr元素,用于钎焊SiC陶瓷/Inconel 625合金,利用Zr元素阻止恶化接头性能的石墨产生,得到接头的抗剪强度为82 MPa. Li等人[12]在1380 ℃的高温下采用含有碳纳米管的Si-24Ti钎料对SiC陶瓷进行了钎焊,结果表明,钎料在陶瓷表面润湿性良好,钎料与碳纳米管反应生成SiC相原位增强钎缝. He等人[13]采用Si-10Zr钎料对SiCf/SiC和C/C复合材料进行了润湿性研究,其润湿性良好,在1460 ℃的高温下填充该钎料对两种复合材料进行钎焊,钎焊过程中原位生成纳米SiC和粗SiC层,最佳抗剪强度为32 MPa. Yang等人[14-15]采用Au基钎料对SiCf/SiC复合材料和Ni基高温合金进行了钎焊,获得了具有高温稳定性的接头,但Au基钎料成本高. 林盼盼等人[16]和Li等人[17]采用含Ti钎料分别对(Cf-SiCf)/SiBCN/Nb异种材料和SiCp/Al复合材料进行了钎焊,研究了焊接工艺对界面组织和接头力学性能的影响,结果表明,获得了可靠的钎焊接头,接头中均原位生成了含Ti化合物. Wang等人[18]填充CoFeNiCrCu高熵合金钎料实现了ZrB2-SiC陶瓷和Nb的异种材料钎焊,生成的齿形Cr2B改善了界面组织,含软面心立方和硬Laves相的复合组织提高了接头强度,最大抗剪强度为60 MPa. 上述研究均对适用于SiC陶瓷钎焊的钎料进行了研究,但距离工程应用还有一定距离,还存在钎焊温度高、接头强度偏低、钎料成本高等问题,仍需进一步探索性能良好、制备工艺简单、钎焊温度适宜、成本较低的新钎料.

    文中设计了一种泡沫Ti/AlSiMg钎料,填充该钎料对SiC陶瓷进行钎焊,分析接头组织、成分和性能,探讨该钎料在SiC陶瓷钎焊中的适用性. 该钎料以铝合金为基体,其成本低、加工性能良好,以泡沫Ti为骨架,利用其溶解促进Al基钎料在陶瓷表面的润湿,泡沫Ti与Al基钎料之间反应生成化合物,原位增强钎缝,减小钎缝金属热膨胀系数,降低焊后接头残余应力,为SiC陶瓷钎焊提供一种新的钎料.

    试验所用SiC陶瓷通过无压烧结而成. SiC陶瓷的密度为3.10 ~ 3.15 g/cm3,硬度为92 ~ 94 HRA,热膨胀系数为4.0 × 10−6−1,其尺寸为20 mm × 20 mm × 5 mm. 泡沫钛是由高纯钛粉经分筛、冷等静压成型后高温高真空烧结而成,其尺寸为100 mm × 50 mm × 0.56 mm,钎焊前剪为20 mm × 16 mm × 0.56 mm,其孔隙率为35% ~ 45%,孔隙直径约为50 μm. 文中所用钎料为市售AlSiMg粉末,颗粒度为200目,其化学成分如表1所示.

    表  1  AlSiMg钎料成分(质量分数,%)
    Table  1.  Compositions of the AlSiMg filler metal
    Si Mg Cu Al
    9.5 ~ 10.5 1.0 ~ 2.0 ≤ 0.25 余量
    下载: 导出CSV 
    | 显示表格

    焊前所有待焊SiC陶瓷和泡沫Ti均用丙酮超声波清洗5 min,然后冷风吹干.装配时,将AlSiMg粉末钎料或者AlSiMg/泡沫Ti/AlSiMg复合钎料置于两块SiC陶瓷之间,如图1所示. 焊接时,装配好的待焊工件置于KMY-5型真空扩散焊炉内石墨下压头上表面,通过石墨上压头的向下运动进行机械施压. 选用前期试验得到的最佳钎焊工艺参数:钎焊温度700 ℃、保温时间60 min和焊接压力10 MPa. 焊接全过程施加机械压力10 MPa,炉内气压不高于3.9 × 10−3 Pa.

    图  1  钎焊装配示意图
    Figure  1.  Schematic diagram of brazing assemblies. (a) with AlSiMg filler; (b) with Ti foam/AlSiMg filler

    采用光学显微镜、装配有能谱仪(energy dispersive spectrometer, EDS)的NovaSEM 450型扫描电子显微镜(scanning electron microscope, SEM)、SmartLab 9 X型X射线衍射分析仪(X-ray diffractometer, XRD)和 JXA-8530F PLUS型电子探针(electron probe micro analyzer, EPMA)对接头组织和成分进行研究分析. 利用SHT5305型万能试验机对接头进行剪切试验,剪切原理示意图如图2所示,采用SEM和EDS对断口形貌和成分进行观察与分析.

    图  2  剪切原理示意图
    Figure  2.  Schematic diagram of shear principle

    图3为接头组织形貌. 填充AlSiMg钎料所得接头钎缝平直,与两侧陶瓷结合较为紧密,无明显过渡层,如图3a图3b所示. 填充泡沫Ti/AlSiMg复合钎料所得接头钎缝平直、宽度较大,如图3c图3d所示. 图4为填充泡沫Ti/AlSiMg钎料所得接头界面形貌. 从图4能清晰看出,钎缝与SiC陶瓷结合处有两层界面,钎缝内部主要有白色基体相A和灰色增强相B.

    图  3  接头的微观组织
    Figure  3.  Microstructure of the joints. (a) morphology of the joint filled with AlSiMg; (b) enlarged area Ⅰ in Fig.3a; (c) morphology of the joint filled with foam Ti/AlSiMg; (d) enlarged area Ⅱ in Fig.3c
    图  4  填充泡沫Ti/AlSiMg复合钎料所得接头界面形貌
    Figure  4.  Interface morphology of the joint filled with Ti foam/AlSiMg composite filler metal

    图5为接头剪切断口的XRD分析结果. 如图5a所示,填充AlSiMg钎料时,结果显示含Al相和SiC相,Al相来源于钎缝金属,SiC相来源于母材. 对填充泡沫Ti/AlSiMg复合钎料的接头断口含钎缝侧进行了XRD测试,结果如图5b所示,结果显示含有Al,Ti,SiC和Ti(Al, Si)3相.

    图  5  XRD分析结果
    Figure  5.  XRD analysis results. (a) with AlSiMg filler metal; (b) with foam Ti/AlSiMg filler metal

    图3d中1 ~ 3点进行EPMA分析,结合XRD分析,成分和物相分析结果如表2所示. 根据图3d表2可知,与SiC直接接触的界面层1为铝合金薄层,界面层2为Ti(Al,Si)3层,钎缝主要以Ti为基体,沿泡沫Ti孔隙生成大量的Ti(Al,Si)3化合物,原位增强Ti基钎缝. 接头组织结构为SiC/Al/Ti(Al,Si)3/Ti(Al,Si)3原位增强Ti基钎缝/Ti(Al,Si)3/Al/SiC.

    表  2  接头的成分分析(原子分数,%)
    Table  2.  Compositions analysis of the joints
    位置 Al Si Ti C Mg 可能相
    1 93.742 5.282 0.365 0.487 0.124 Al固溶体
    2 60.474 11.264 25.000 3.261 0.001 Ti(Al,Si)3
    3 97.620 2.380 Ti固溶体
    下载: 导出CSV 
    | 显示表格

    图6为填充泡沫Ti/AlSiMg钎料的接头的线扫描结果. 从SiC陶瓷到钎缝内部,有 Ⅲ,Ⅳ 两层不同成分区域,区域 Ⅲ 主要为Al元素,区域 Ⅳ 主要为含Al,Ti和Si元素的化合物. 图7图8分别为填充泡沫Ti/AlSiMg钎料所得接头界面的形貌和电子探针面扫描结果. 图7图8的上部为SiC陶瓷,下部为钎缝,中间有两层界面,靠近SiC陶瓷的界面主要含Al元素,靠近钎缝的界面层主要含Al,Si和Ti元素. 线扫描和面扫描结果均与表2所示分析结果相吻合.

    图  6  填充泡沫Ti/AlSiMg复合钎料所得接头线扫描结果
    Figure  6.  Line scanning results of the joint with Ti foam/ AlSiMg composite filler
    图  7  填充泡沫Ti/AlSiMg复合钎料所得接头界面形貌
    Figure  7.  Interface morphology of the joint with foam Ti/AlSiMg composite filler

    图9为接头的抗剪强度. 填充AlSiMg钎料和泡沫Ti/AlSiMg钎料的接头抗剪强度分别为86和111 MPa,泡沫Ti的加入使得接头抗剪强度提高约29.1%. 图10为接头的剪切断口形貌. 填充AlSiMg钎料的接头在剪切过程中SiC陶瓷及钎料全部破碎,从破碎残片中选择了一块尺寸较大的进行断口分析;填充泡沫Ti/AlSiMg钎料的接头在剪切过程中SiC陶瓷全部破碎,钎料未破碎,对钎料侧进行断口分析. 填充两种钎料的接头均断于SiC陶瓷与钎料界面处. 断口中区域4和5的成分如表3所示. 填充AlSiMg钎料所得接头的断口整齐,其表面为Si含量较高的Al合金,如图10a所示. 填充泡沫Ti/AlSiMg钎料所得接头的断口中钎料表面残留部分SiC陶瓷,如图10b所示,成分分析结果表明,断裂发生在Al合金层(即图4中界面层1)与SiC陶瓷之间. 钎焊过程中少量Ti溶解于铝合金液相中,提高了铝合金界面层与SiC陶瓷之间的界面结合力,使得接头断裂后仍有部分SiC陶瓷残留在钎料表面上.

    表  3  图10中不同区域元素含量(原子分数,%)
    Table  3.  Element contents in different regions in Fig.10
    位置 Al Si Ti
    4 78.13 21.87
    5 55.41 44.31 0.28
    下载: 导出CSV 
    | 显示表格
    图  8  填充泡沫Ti/AlSiMg复合钎料所得接头的面扫描结果
    Figure  8.  Surface scanning results of the joint with Ti foam/AlSiMg composite filler. (a) element distribution of Al; (b) element distribution of Si; (c) element distribution of Ti; (d) element distribution of Mg; (e) element distribution of C
    图  9  接头的抗剪强度
    Figure  9.  Shearing strength of the joints
    图  10  断口形貌
    Figure  10.  Morphology of the fractures. (a) with AlSiMg filler; (b) with foam Ti/AlSiMg filler

    (1)填充AlSiMg钎料和泡沫Ti/AlSiMg钎料分别对SiC陶瓷进行了钎焊.填充AlSiMg钎料时,钎缝主要为Al合金相;填充泡沫Ti/AlSiMg钎料时,接头组织结构为SiC/Al/Ti(Al,Si)3/Ti(Al,Si)3原位增强Ti基钎缝/ Ti(Al,Si)3/Al/SiC.

    (2)对填充AlSiMg和泡沫Ti/AlSiMg钎料的接头分别进行了剪切试验,其抗剪强度分别为86和111 MPa,填充泡沫Ti/AlSiMg的接头抗剪强度相比填充AlSiMg钎料时提高29.1%.

  • 图  1   烧结纳米银RVE的生成算法

    Figure  1.   Generation algorithm of RVE for sintered silver nanoparticles

    图  2   3种孔隙率下的RVE模型

    Figure  2.   RVE models under three types of porosity. (a) 0.1; (b) 0.2; (c) 0.3

    图  3   3种单调加载条件下RVE的冯米塞斯应力分布

    Figure  3.   Von Mises stress distribution of RVE under three monotonic loading conditions. (a) x tension; (b) y tension; (c) z tension

    图  4   不同孔隙率RVE模型的弹性模量和泊松比

    Figure  4.   Predicted elastic modulus and poisson’s ratio for RVE models with different porosities

    图  5   烧结纳米银搭接接头有限元模型

    Figure  5.   Finite element model of the lap joint for sintered silver nanoparticles. (a) geometrical model and its dimensions (mm); (b) boundary conditions and mesh discretization

    图  6   不同孔隙率RVE模型的弹塑性响应的预测结果

    Figure  6.   Predicted elastoplastic response of RVE models with different porosities

    图  7   烧结纳米银剪切变形行为模拟结果

    Figure  7.   Predicted shear deformation behaviour of sintered silver nanoparticles. (a) von Mises stress distribution of the sintered layer with the porosity of 0.3; (b) von Mises equivalent stress curve with time of the sintered layer with different porosities; (c) displacement–load curve at the reference point under different porosities

  • [1]

    Mao Minghui, Liu Jiansong, Tian Mengke, et al. Drop impact analysis of TSV-based 3D packaging structure by PSO-BP and GA-BP neural networks[J]. China Welding, 2022, 31(1): 37 − 46.

    [2] 吴炜祯, 杨帆, 胡博, 等. 用于大面积芯片互连的纳米银膏无压烧结行为[J]. 焊接学报, 2021, 42(1): 83 − 90.

    Wu Weizhen, Yang Fan, Hu Bo, et al. Pressureless sintering behaviour of nanoscale silver paste for large-area chip interconnects[J]. Transactions of the China Welding Institution, 2021, 42(1): 83 − 90.

    [3]

    Chen Chuantong, Zhang Hao, Jiu Jinting, et al. Thermal fatigue behaviors of SiC power module by Ag sinter joining under harsh thermal shock test[J]. China Welding, 2022, 31(1): 15 − 21.

    [4]

    Long Xu, Guo Ying, Su Yutai, et al. Constitutive, creep, and fatigue behavior of sintered Ag for finite element simulation of mechanical reliability: a critical review [J]. Journal of Materials Science: Materials in Electronics, 2022, 33: 1-17.

    [5]

    John Bai G, Zhiye Zach Zhang, Jesus N Calata, et al. Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material[J]. IEEE Transactions on Components Packaging Technologies, 2006, 29(3): 589 − 593. doi: 10.1109/TCAPT.2005.853167

    [6]

    Long Xu, Chong Kainan, Su Yutai, et al. Connecting the macroscopic and mesoscopic properties of sintered silver nanoparticles by crystal plasticity finite element method[J]. Engineering Fracture Mechanics, 2023, 281: 109137. doi: 10.1016/j.engfracmech.2023.109137

    [7]

    Qian Cheng, Gu Tijian, Wang Ping, et al. Tensile characterization and constitutive modeling of sintered nano-silver particles over a range of strain rates and temperatures[J]. Microelectronics Reliability, 2022, 132: 114536. doi: 10.1016/j.microrel.2022.114536

    [8]

    Long Xu, Jia Qipu, Li Zhen, et al. Reverse analysis of constitutive properties of sintered silver particles from nanoindentations[J]. International Journal of Solids Structures, 2020, 191: 351 − 62.

    [9]

    Long Xu, Shen Ziyi, Jia Qipu, et al. Determine the unique constitutive properties of elastoplastic materials from their plastic zone evolution under nanoindentation[J]. Mechanics of Materials, 2022, 175: 104485. doi: 10.1016/j.mechmat.2022.104485

    [10]

    Long Xu, Hu Bo, Feng Yihui, et al. Correlation of microstructure and constitutive behaviour of sintered silver particles via nanoindentation[J]. International Journal of Mechanical Sciences, 2019, 161: 105020.

    [11]

    Yang Fan, Zhu Wenbo, Wu Weizhen, et al. Microstructural evolution and degradation mechanism of SiC–Cu chip attachment using sintered nano-Ag paste during high-temperature ageing[J]. Journal of Alloys Compounds, 2020, 846: 156442. doi: 10.1016/j.jallcom.2020.156442

    [12]

    Su Yutai, Zhu Jiaqi, Long Xu, et al. Statistical effects of pore features on mechanical properties and fracture behaviors of heterogeneous random porous materials by phase-field modeling[J]. International Journal of Solids Structures, 2023, 264: 112098. doi: 10.1016/j.ijsolstr.2022.112098

    [13]

    Su Yutai, Fu Guicui, Liu Changqing, et al. Thermo-elasto-plastic phase-field modelling of mechanical behaviours of sintered nano-silver with randomly distributed micro-pores[J]. Computer Methods in Applied Mechanics Engineering, 2021, 378: 113729. doi: 10.1016/j.cma.2021.113729

    [14]

    Carr James, Milhet Xavier, Gadaud Pascal, et al. Quantitative characterization of porosity and determination of elastic modulus for sintered micro-silver joints[J]. Journal of Materials processing technology, 2015, 225: 19 − 23. doi: 10.1016/j.jmatprotec.2015.03.037

    [15]

    Long Xu, Tang Wenbin, Xia Weijuan, et al. Porosity and Young's modulus of pressure-less sintered silver nanoparticles [C]//Proceedings of the 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC), IEEE, Singapore, December 6–9, 2017:1−18.

    [16]

    Yao Yao, Huang Qi, Wang Shaobin. Effects of porosity and pore microstructure on the mechanical behavior of nanoporous silver[J]. Materials Today Communications, 2020, 24: 101236. doi: 10.1016/j.mtcomm.2020.101236

    [17]

    Long Xu, Li Zhen, Lu Xiuzhen, et al. Mechanical behaviour of sintered silver nanoparticles reinforced by SiC microparticles[J]. Materials Science and Engineering:A, 2019, 744: 406 − 414. doi: 10.1016/j.msea.2018.12.015

    [18] 张超, 许希武, 严雪. 纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现[J]. 航空学报, 2013, 34(7): 1636 − 1645.

    Zhang Chao, Xu Xiwu, Yan Xue. General periodic boundary conditions for fine mechanical analysis of textile composites and their finite element implementation[J]. Acta Aeronautica ET Astronautica Sinica, 2013, 34(7): 1636 − 1645.

    [19]

    Luís F A Bernardo, Ana P B M Amaro, Deesy G Pinto, et al. Modeling and simulation techniques for polymer nanoparticle composites–a review[J]. Computational Materials Science, 2016, 118: 32 − 46. doi: 10.1016/j.commatsci.2016.02.025

    [20]

    Tian Wenlong, Chao Xujiang, Fu M W, et al. An advanced method for efficiently generating composite RVEs with specified particle orientation[J]. Composites Science Technology, 2021, 205: 108647. doi: 10.1016/j.compscitech.2021.108647

    [21]

    Su Yutai, Shen Ziyi, Long Xu, et al. Gaussian filtering method of evaluating the elastic/elasto-plastic properties of sintered nanocomposites with quasi-continuous volume distribution [J]. Materials Science and Engineering: A, 2023, 872: 145001.

    [22]

    Hill Rodney. Elastic properties of reinforced solids: some theoretical principles[J]. Journal of the Mechanics Physics of Solids, 1963, 11(5): 357 − 72. doi: 10.1016/0022-5096(63)90036-X

    [23]

    Hori Muneo, Nemat-Nasser Sia. On two micromechanics theories for determining micro–macro relations in heterogeneous solids[J]. Mechanics of Materials, 1999, 31(10): 667 − 82. doi: 10.1016/S0167-6636(99)00020-4

    [24]

    Long Xu, Chong Kainan, Su Yutai, et al. Meso-scale low-cycle fatigue damage of polycrystalline nickel-based alloy by crystal plasticity finite element method [J]. International Journal of Fatigue, 2023, 175: 107778.

    [25]

    Tian Wenlong, Qi Lehua, Chao Xujiang, et al. Periodic boundary condition and its numerical implementation algorithm for the evaluation of effective mechanical properties of the composites with complicated micro-structures[J]. Composites Part B:Engineering, 2019, 162: 1 − 10. doi: 10.1016/j.compositesb.2018.10.053

  • 期刊类型引用(2)

    1. 康蕾,刘飞,陈韬. 1050A纯铝/TA15钛合金异种金属冷焊接头组织与性能. 焊接. 2024(12): 61-66 . 百度学术
    2. 闫耀天,刘柏深,曹健,亓钧雷. 直流电热冲击辅助多组分氧化物钎焊SiC陶瓷的工艺及性能. 焊接学报. 2022(11): 22-29+164 . 本站查看

    其他类型引用(0)

图(7)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  32
  • PDF下载量:  71
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-06-12
  • 网络出版日期:  2023-11-12
  • 刊出日期:  2023-12-24

目录

/

返回文章
返回