Research progress of laser direct writing technologies for the conductive metallic wire on dielectric surface
-
摘要:
电介质表面金属导线在微电子、光电子、机电系统等领域的需求极大. 作为一种无掩膜柔性制造技术,激光直写可在多种电介质表面制造任意形状金属导线,近年来迅速发展. 基于激光与材料相互作用的光化学和光热效应,电介质表面金属导线激光直写技术可分为光致化学还原金属离子、选择性激光烧结、激光诱导向前转移、激光加热还原金属离子等. 文中详细介绍了几种金属导线激光直写技术的原理、特点以及最新研究进展,并对激光直写技术在金属导线的制造中的发展进行了总结和展望.
Abstract:Fabrication of conductive metallic wire on dielectric surface has a broad application in microelectronics, optoelectronics, electromechanical systems, etc. As a very promising alternative, laser direct writing is a maskless, efficient, and flexible approach that readily allows for free-form writing of a wide range of conductive metallic patterns on substrates, and hence has attracted an enormous amount of attention in the past several years. Laser direct writing can be achieved via photochemical or photothermal process, including photochemical reduction of metal ions, laser induced forward transfer, laser heating reduction of metal ions, etc. Herein, the laser direct writing strategies for fabrication of conductive metallic wires including the principle, characteristics and research progress have been reviewed in detail. Furthermore, remaining challenges and development trends are summarized and prospected.
-
Keywords:
- laser manufacturing /
- laser direct writing /
- conductive metallic wire
-
-
图 5 纳米颗粒增强吸收飞秒激光加热还原Cu2+[69]
Figure 5. Femtosecond laser heating reduction of Cu2+ via nanoparticle enhanced absorption
表 1 不同激光直写技术制造金属导线典型研究结果对比
Table 1 Comparison of the conductive metallic wires based on the laser direct writing technologies
光学效应 激光直写技术 相组成 最小线宽 最高制造速率 导电性 技术优/缺点 光化学 单光子还原
金属离子Ag[19] 15 μm 100 μm/s 3.1 × 10−8 Ω·m
(化学镀Cu)优点:基底热累积少、热变形低,避免金属过氧化.
缺点:金属颗粒孤立不连续,导线不连续.Au[20] — 曝光60 min — Au[21] 1 μm 曝光3 s — 光化学 双光子还原
金属离子Au[25] 228 nm 5 μm/s 1.7 × 10−7 Ω·m 优点:金属导线分辨率高,线宽可以突破光学衍射
极限.
缺点:直写速度一般低于百微米每秒,制造效率低.Ag[28] 120 nm 6 μm/s — Ag[30] 700 nm 24 μm/s 5.3 × 10−8 Ω·m Ag[31] 186 nm 10 μm/s 4.1 × 10−7 Ω·m 光热 选择性激光烧结金属纳米颗粒 Cu[18] 16.5 μm 400 mm/s 1.5 × 10−7 Ω·m 优点:激光引起纳米颗粒表面形成局部等离子体共
振增强光热效应,缩短金属材料烧结时间.
缺点:金属纳米颗粒不稳定,材料合成难度大、成
本高.Ag[38] ~ 200 μm 4 mm/s 8.0 × 10−8 Ω·m Ag[39] 4 μm 40 mm/s 5.3 × 10−8 Ω·m Ag[41] 5 μm 4 mm/s 8.9 × 10−8 Ω·m Ag[42] — 200 μm/s 7.1 × 10−8 Ω·m 光热 激光诱导
向前转移Ag[53] 70 μm 450 mm/s 2.5 × 10−7 Ω·m 优点:供体层与接收基底分离,避免成形金属对待
加工材料造成污染.
缺点:金属导线边缘精度不高,墨水层状态不稳定.Ag[46] 85 μm — 4.0 × 10−8 Ω·m Pt[47] 600 nm 10 μm/s 4.2 × 10−6 Ω·m Ag[47] 720 nm 20 μm/s 1.7 × 10−7 Ω·m 光热 激光加热还原
金属离子Ni[58] 6.5 μm 10 mm/s 6.3 × 10−7 Ω·m 优点:条件简单、制造效率高.
缺点:采用连续或短脉冲激光器,热影响明显、金
属导线精度不高,热敏基底易损伤.Cu[16] — 20 mm/s 0.57 Ω/sq Cu[62] 130 μm 10 mm/s 4.0 × 10−8 Ω·m Cu[63] ~ 500 μm 5 mm/s 3.4 × 10−6 Ω·m Cu[64] 760 μm 3 mm/s 1.2 Ω/sq Cu[69] 50 μm 100 mm/s 0.13 Ω/sq 技术优化:纳米材料增强吸收飞秒激光加热还原金属
离子,制造效率高、金属导线成形质量高. -
[1] Rodriguez R D, Shchadenko S, Murastov G, et al. Ultra-robust flexible electronics by laser-driven polymer-nanomaterials integration[J]. Advanced Functional Materials, 2021, 31(17): 2008818. doi: 10.1002/adfm.202008818
[2] Sharma V, Sharma H, Singh S K, et al. Organic–inorganic hybrid structure as a conductive and transparent layer for energy and optoelectronic applications[J]. ACS Applied Electronic Materials, 2021, 3(4): 1601 − 1609. doi: 10.1021/acsaelm.0c01099
[3] Moriyama M, Suzuki Y, Totsu K, et al. Metal-bonding-based hermetic wafer-level MEMS packaging technology using in-plane feedthrough: Hermeticity and high frequency characteristics of thick gold film feedthrough[J]. Electrical Engineering in Japan, 2019, 206(2): 44 − 53. doi: 10.1002/eej.23193
[4] Jin P, Fu J, Wang F, et al. A flexible, stretchable system for simultaneous acoustic energy transfer and communication[J]. Science Advances, 2021, 7(40): eabg2507. doi: 10.1126/sciadv.abg2507
[5] Fang L, Pan X, Liu K, et al. Surface-roughened SERS-active single silver nanowire for simultaneous detection of intracellular and extracellular pHs[J]. ACS Applied Materials & Interfaces, 2023, 15: 20677 − 20685.
[6] Zhu Y M, Tang J, Jin X, et al. Additive preparation of conductive circuit based on template transfer process using a reusable photoresist[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7679 − 7689.
[7] Li W, Li L, Sun Q, et al. Direct fabrication of high-resolution and high-performance flexible electronics via surface-activation-localized electroless plating[J]. Chemical Engineering Journal, 2021, 416: 127644. doi: 10.1016/j.cej.2020.127644
[8] Hossain Bhuiyan M E, Moreno S, Wang C, et al. Interconnect fabrication by electroless plating on 3D-printed electroplated patterns[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19271 − 19281.
[9] Liu J, Yang C, Wu H, et al. Future paper based printed circuit boards for green electronics: fabrication and life cycle assessment[J]. Energy Environmental Science, 2014, 7(11): 3674 − 3682. doi: 10.1039/C4EE01995D
[10] 周兴汶, 廖嘉宁, 姚煜, 等. 铜微纳结构的激光直写及其应用研究进展[J]. 中国激光, 2021, 48(8): 0802012. doi: 10.3788/CJL202148.0802012 Zhou Xingwen, Liao Jianing, Yao Yu, et al. Direct laser writing of micro nano copper structures and their applications[J]. Chinese Journal of Lasers, 2021, 48(8): 0802012. doi: 10.3788/CJL202148.0802012
[11] 陈忠贇, 方淦, 曹良成, 等. 飞秒激光光镊直写银微纳结构[J]. 中国激光, 2018, 45(4): 0402006. doi: 10.3788/CJL201845.0402006 Chen Zhongyun, Fang Gan, Cao Liangcheng, et al. Direct writing of silver micro-nanostructures by femtosecond laser tweezer[J]. Chinese Journal of Lasers, 2018, 45(4): 0402006. doi: 10.3788/CJL201845.0402006
[12] 马竞, 朱煜, 杨开明. 应用飞秒激光双光子吸收还原金属离子[J]. 激光技术, 2010, 34(3): 395 − 397. Ma Jing, Zhu Yu, Yang Kaiming. Metal ion reduction induced by fertolaser two-photon absorption[J]. Laser Technology, 2010, 34(3): 395 − 397.
[13] Reiser A, Koch L, Dunn K A, et al. Metals by micro-scale additive manufacturing: comparison of microstructure and mechanical properties[J]. Advanced Functional Materials, 2020, 30(28): 1910491. doi: 10.1002/adfm.201910491
[14] Nam V B, Giang T T, Koo S, et al. Laser digital patterning of conductive electrodes using metal oxide nanomaterials[J]. Nano Convergence, 2020, 7(1): 23. doi: 10.1186/s40580-020-00232-9
[15] Yeo J, Kim G, Hong S, et al. Single nanowire resistive nano-heater for highly localized thermo-chemical reactions: localized hierarchical heterojunction nanowire growth[J]. Small, 2014, 10(24): 5015 − 5022. doi: 10.1002/smll.201401427
[16] Liao J, Guo W, Peng P. Direct laser writing of copper-graphene composites for flexible electronics[J]. Optics and Lasers in Engineering, 2021, 142: 106605. doi: 10.1016/j.optlaseng.2021.106605
[17] Zhou X, Guo W, Yao Y, et al. Flexible nonenzymatic glucose sensing with one-step laser-fabricated Cu2O/Cu porous structure[J]. Advanced Engineering Materials, 2021, 23(6): 2100192. doi: 10.1002/adem.202100192
[18] Jo Y, Park H J, Kim Y B, et al. Form‐factor free 3D copper circuits by surface-conformal direct printing and laser writing[J]. Advanced Functional Materials, 2020, 30(45): 2004659. doi: 10.1002/adfm.202004659
[19] Ng J H G, Desmulliez M P Y, Prior K A, et al. Ultra-violet direct patterning of metal on polyimide[J]. Micro & Nano Letters, 2008, 3(3): 82 − 89.
[20] Sakamoto M, Tachikawa T, Fujitsuka M, et al. Acceleration of laser-induced formation of gold nanoparticles in a poly(vinyl alcohol) film[J]. Langmuir, 2006, 22(14): 6361 − 6366. doi: 10.1021/la060304k
[21] Jacobs J W M, Nillesen C J C M. Repair of transparent defects on photomasks by laser-induced metal deposition from an aqueous solution[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures, 1990, 8(4): 635 − 643.
[22] 靳明明, 刘若钰, 项徽清, 等. 激光对羟基磷酸铜的还原机理研究[J]. 激光技术, 2020, 44(2): 148 − 155. doi: 10.7510/jgjs.issn.1001-3806.2020.02.002 Jin Mingming, Liu Ruoyu, Xiang Huiqing, et al. Reduction mechanism of laser on copper hydroxyphosphate[J]. Laser Technology, 2020, 44(2): 148 − 155. doi: 10.7510/jgjs.issn.1001-3806.2020.02.002
[23] 侯田江, 艾骏, 刘建国, 等. 激光改性硅酸盐玻璃表面局域制备金属铜层[J]. 激光技术, 2018, 42(2): 176 − 180. Hou Tianjiang, Ai Jun, Liu Jianguo, et al. Selective preparation of metal copper layer on silicate glass by laser surface modification[J]. Laser Technology, 2018, 42(2): 176 − 180.
[24] Waller E H, Karst J, von Freymann G. Photosensitive material enabling direct fabrication of filigree 3D silver microstructures via laser-induced photoreduction[J]. Light:Advanced Manufacturing, 2021, 2(2): 8.
[25] Lu W, Zhang Y, Zheng M, et al. Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction[J]. Optical Materials Express, 2013, 3(10): 1660 − 1673. doi: 10.1364/OME.3.001660
[26] Zarzar L D, Swartzentruber B S, Harper J C, et al. Multiphoton lithography of nanocrystalline platinum and palladium for site-specific catalysis in 3D microenvironments[J]. Journal of the American Chemical Society, 2012, 134(9): 4007 − 4010. doi: 10.1021/ja211602t
[27] Saveant J M. Electron transfer, bond breaking, and bond formation[J]. Accounts of Chemical Research, 2002, 26(9): 455 − 461.
[28] Cao Y Y, Takeyasu N, Tanaka T, et al. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction[J]. Small, 2009, 5(10): 1144 − 1148. doi: 10.1002/smll.200801179
[29] Waller E H, von Freymann G. From photoinduced electron transfer to 3D metal microstructures via direct laser writing[J]. Nanophotonics, 2018, 7(7): 1259 − 1277. doi: 10.1515/nanoph-2017-0134
[30] Tanaka T, Ishikawa A, Kawata S. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure[J]. Applied Physics Letters, 2006, 88(8): 081107. doi: 10.1063/1.2177636
[31] Ren X, Zheng M, Jin F, et al. Laser direct writing of silver nanowire with amino acids-assisted multiphoton photoreduction[J]. The Journal of Physical Chemistry C, 2016, 120(46): 26532 − 26538. doi: 10.1021/acs.jpcc.6b08395
[32] Waller E H, Dix S, Gutsche J, et al. Functional metallic microcomponents via liquid-phase multiphoton direct laser writing: a review[J]. Micromachines (Basel), 2019, 10(12): 827. doi: 10.3390/mi10120827
[33] Ma Z, Zhang Y, Han B, et al. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications[J]. Small Methods, 2018, 2(7): 1700413. doi: 10.1002/smtd.201700413
[34] Wucher B, Arbaoui L. Multiscale modeling of the sintering process of printed nanoinks[J]. Computers & Mathematics with Applications, 2019, 78(7): 2325 − 2337.
[35] Han J, Li T, Jin X, et al. Research progress of molecular dynamics simulation for nanoparticles[J]. China Welding, 2023, 32(2): 16 − 22.
[36] Tan H W, An J, Chua C K, et al. Metallic nanoparticle inks for 3D printing of electronics[J]. Advanced Electronic Materials, 2019, 5(5): 1800831. doi: 10.1002/aelm.201800831
[37] 黄永德, 彭鹏, 郭伟, 等. 纳米铜基柔性导电薄膜制备现状及前景 [J]. 焊接学报, 2022, 43(11): 147 − 156. Huang Yongde, Peng Peng, Guo Wei, et al. Current status and prospect of preparation of nano-copper based flexible conductive films [J]. Transactions of the China Welding Istitution, 2022, 43(11): 147 − 156.
[38] Maekawa K, Yamasaki K, Niizeki T, et al. Influence of wavelength on laser sintering characteristics of Ag nanoparticles [C]// 2009 59th the Electronic Components & Technology Conference. IEEE, 2009: 1579-1584.
[39] Paeng D, Yeo J, Lee D, et al. Laser wavelength effect on laser-induced photo-thermal sintering of silver nanoparticles[J]. Applied Physics A, 2015, 120(4): 1229 − 1240. doi: 10.1007/s00339-015-9320-z
[40] Sharif A, Farid N, McGlynn P, et al. Ultrashort laser sintering of printed silver nanoparticles on thin, flexible, and porous substrates[J]. Journal of Physics D:Applied Physics, 2023, 56(7): 075102. doi: 10.1088/1361-6463/acb367
[41] Noh J, Ha J, Kim D. Femtosecond and nanosecond laser sintering of silver nanoparticles on a flexible substrate[J]. Applied Surface Science, 2020, 511: 145574. doi: 10.1016/j.apsusc.2020.145574
[42] Noh J, Kim D. Femtosecond laser sintering of silver nanoparticles for conductive thin-film fabrication[J]. Applied Physics A, 2020, 126(2): 124. doi: 10.1007/s00339-019-3238-9
[43] Sloma M. 3D printed electronics with nanomaterials[J]. Nanoscale, 2023, 15(12): 5623 − 5648. doi: 10.1039/D2NR06771D
[44] 崔淑媛, 刘军, 吴伟. 金属纳米颗粒导电墨水的制备及其在印刷电子方面的应用 [J]. 化学进展, 2015, 27(10): 1509 − 1522. Cui Suyuan, Liu Jun, Wu Wei. Preparation of metal nanoparticles-based conductive inks and their applications in printed electronics [J]. Progress in Chemistry, 2015, 27(10): 1509 − 1522.
[45] Sopena P, Arrese J, Gonzalez-Torres S, et al. Low-cost fabrication of printed electronics devices through continuous wave laser-induced forward transfer[J]. ACS Appl Mater Interfaces, 2017, 9(35): 29412 − 29417. doi: 10.1021/acsami.7b04409
[46] Andritsos K, Theodorakos I, Zacharatos F, et al. Conformal laser printing and laser sintering of Ag nanoparticle inks: a digital approach for the additive manufacturing of micro-conductive patterns on patterned flexible substrates[J]. Virtual and Physical Prototyping, 2022, 18(1): e2138462.
[47] Yang L, Hu H, Scholz A, et al. Laser printed microelectronics[J]. Nature Communications, 2023, 14(1): 1103. doi: 10.1038/s41467-023-36722-7
[48] Willis D A, Grosu V. Microdroplet deposition by laser-induced forward transfer[J]. Applied Physics Letters, 2005, 86(24): 244103. doi: 10.1063/1.1944895
[49] Luo G, Wu D, Zhou Y, et al. Elucidating ejection regimes of metal microdroplets in voxel-based laser-induced forward transfer[J]. Additive Manufacturing, 2022, 55: 102814. doi: 10.1016/j.addma.2022.102814
[50] Auyeung R C, Kim H, Mathews S, et al. Laser forward transfer using structured light[J]. Optics Express, 2015, 23(1): 422 − 430. doi: 10.1364/OE.23.000422
[51] Serra P, Colina M, Fernández-Pradas J M, et al. Preparation of functional DNA microarrays through laser-induced forward transfer[J]. Applied Physics Letters, 2004, 85(9): 1639 − 1641. doi: 10.1063/1.1787614
[52] Zenou M, Kotler Z. Printing of metallic 3D micro-objects by laser induced forward transfer[J]. Optics Express, 2016, 24(2): 1431 − 1446. doi: 10.1364/OE.24.001431
[53] Pozov S M, Andritsos K, Theodorakos I, et al. Indium tin oxide-free inverted organic photovoltaics using laser-induced forward transfer silver nanoparticle embedded metal grids[J]. ACS Applied Electronic Materials, 2022, 4(6): 2689 − 2698. doi: 10.1021/acsaelm.2c00217
[54] 孙春强, 王卓超, 姬栋超, 等. 激光诱导向前转移薄膜材料的研究进展[J]. 表面技术, 2022, 51(8): 30 − 40. doi: 10.16490/j.cnki.issn.1001-3660.2022.08.003 Sun Chunqiang, Wang Zhuochao, Ji Dongchao, et al. Research progress of laser-induced forward transfer thin films[J]. Surface Technology, 2022, 51(8): 30 − 40. doi: 10.16490/j.cnki.issn.1001-3660.2022.08.003
[55] 申惠娟, 翁占坤, 陈星源, 等. 基于激光诱导向前转移技术的微纳结构制备研究现状[J]. 人工晶体学报, 2021, 50(1): 179 − 186. doi: 10.16553/j.cnki.issn1000-985x.2021.01.027 Shen Huijuan, Wong Zhankun, Chen Xingyuan, et al. Preparation of micro-nano structure based on laser induced forward transfer technique[J]. Journal of Synthetic Crystals, 2021, 50(1): 179 − 186. doi: 10.16553/j.cnki.issn1000-985x.2021.01.027
[56] Dellas N S, Meinert K, Mohney S E. Laser-enhanced electroless plating of silver seed layers for selective electroless copper deposition[J]. Journal of Laser Applications, 2008, 20(4): 218 − 223. doi: 10.2351/1.2995767
[57] Bai S, Lin Y, Zhang X, et al. Two-step photonic reduction of controlled periodic silver nanostructures for surface-enhanced raman spectroscopy[J]. Plasmonics, 2015, 10(6): 1675 − 1685. doi: 10.1007/s11468-015-9979-1
[58] Lee D, Paeng D, Park H K, et al. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors[J]. ACS Nano, 2014, 8(10): 9807 − 9814. doi: 10.1021/nn503383z
[59] Klotzbach U, Watanabe A, Lu Y, et al. Laser sintering of gold nanoparticles on a copper substrate toward an alternative to gold plating [C]//Laser-based Micro- and Nanopackaging and Assembly VII, SPIE, 2013: 128 − 135.
[60] Kochemirovsky V A, Menchikov L G, Safonov S V, et al. Laser-induced chemical liquid phase deposition of metals: chemical reactions in solution and activation of dielectric surfaces[J]. Russian Chemical Reviews, 2011, 80(9): 869 − 882. doi: 10.1070/RC2011v080n09ABEH004224
[61] Long J, Eliceiri M H, Wang L, et al. Capturing the final stage of the collapse of cavitation bubbles generated during nanosecond laser ablation of submerged targets[J]. Optics & Laser Technology, 2021, 134: 106647.
[62] Zhou X, Guo W, Zhu Y, et al. The laser writing of highly conductive and anti-oxidative copper structures in liquid[J]. Nanoscale, 2020, 12(2): 563 − 571. doi: 10.1039/C9NR07248A
[63] Peng P, Li L, He P, et al. One-step selective laser patterning of copper/graphene flexible electrodes[J]. Nanotechnology, 2019, 30(18): 185301. doi: 10.1088/1361-6528/aafe4c
[64] Zhou X, Guo W, Fu J, et al. Laser writing of Cu/CuxO integrated structure on flexible substrate for humidity sensing [J]. Applied Surface Science, 2019, 494: 684-690.
[65] Zhou X, Guo W, Peng P. Laser erasing and rewriting of flexible copper circuits[J]. Nano-micro Letters, 2021, 13(1): 184. doi: 10.1007/s40820-021-00714-3
[66] Zhou W, Bai S, Ma Y, et al. Laser-direct writing of silver metal electrodes on transparent flexible substrates with high-bonding strength[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24887 − 24892.
[67] Kim D, Choi C. Laser-induced metal reduction from liquid electrolyte precursor[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(11): 7581 − 7585. doi: 10.1166/jnn.2013.7885
[68] Zhang J, Feng J, Jia L, et al. Laser-induced selective metallization on polymer substrates using organocopper for portable electronics[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13714 − 13723.
[69] Cui M, Huang T, Peng Z, et al. High‐efficiency and low-intensity threshold femtosecond laser direct writing of precise metallic micropatterns on transparent substrate[J]. Advanced Materials Technologies, 2023, 8(8): 2201610. doi: 10.1002/admt.202201610
[70] 崔梦雅, 黄婷, 肖荣诗. 基于纳米颗粒热效应的飞秒激光高效直写金属铜微结构[J]. 中国激光, 2022, 49(8): 0802015. doi: 10.3788/CJL202249.0802015 Cui Mengya, Huang Ting, Xiao Rongshi. Femtosecond laser direct writing of copper microstructures with high effciency via thermal efect of nanoparticles[J]. Chinese Journal of Lasers, 2022, 49(8): 0802015. doi: 10.3788/CJL202249.0802015
[71] Cui M, Huang T, Xiao R. Rapid fabrication of conductive copper patterns on glass by femtosecond laser-induced reduction[J]. Applied Surface Science, 2022, 588: 152915. doi: 10.1016/j.apsusc.2022.152915
-
期刊类型引用(3)
1. 晏杰,胡水莲,张维维,白鹏飞,李涛. GTAW堆焊工艺参数对2A12铝合金板堆焊焊缝组织和力学性能的影响. 轻合金加工技术. 2024(09): 46-52 . 百度学术
2. 徐心洁,林文钦,胡成江,路寒,蒋洪俊. LY12角片断裂分析. 失效分析与预防. 2021(02): 139-142 . 百度学术
3. 杨帅,邢彦锋,刘文杰. 基于超声清洗的CMT焊缝质量分析. 上海工程技术大学学报. 2020(03): 284-289 . 百度学术
其他类型引用(1)