高级检索

基于机器学习的电弧行为识别与特征分析

Arc behaviour recognition and characterization analysis by using machine learning

  • 摘要: 电弧熔丝增材制造过程中电弧行为是影响零件成形精度及质量的关键因素之一,针对电弧熔丝增材制造过程中电弧无振荡、摇摆振荡以及圆周振荡3种电弧状态的监测图像,提出一种基于局部二值模式 (local binary pattern,LBP) 与GoogLeNet神经网络结合识别电弧模式的新方法. 结果表明,通过局部二值模式获取电弧形态图像中的纹理特征,然后建立GoogLeNet神经网络模型,相比于直接对原始图像进行神经网络的训练,该方法可有效识别电弧长度、宽度以及左右最大倾角随堆积层数的变化规律,从而精准判别电弧所属状态. 针对常规存在熔池、熔滴以及复杂背景等因素干扰的电弧形态图像,该方法处理后可获得更清晰的电弧边缘轮廓,更有利于将熔池、熔滴和电弧的形态边界进行划分,最终的状态识别准确率可达99.50%,为电弧熔丝增材制造过程中的电弧状态监测提供理论参考.

     

    Abstract: In this paper, we propose a new method based on the combination of local binary pattern (LBP) and GoogLeNet neural network to identify the arc patterns in the monitoring images of three types of arc states, namely, stable arc, swinging oscillation, and circumferential oscillation, in the wire arc additive manufacturing process. The results show that obtaining the texture features in the arc pattern image via local binary pattern, and then building the GoogLeNet neural network model can effectively identify the arc length, arc width, and left and right maximum inclination with the number of stacked layers, which can be used to accurately identify the arc state compared with the direct training of neural network on the original image. For the arc morphology images in where are influenced by droplets, complex background and other factors, the proposed method can achieve a clear arc edge, whichbenefics boundary identification of melt pool, droplets and arc morphology. The extract accuracy of arc state is up to 99.50%. The research outcomes will provide a theoretical reference for monitoring arc state during wire arc additive manufacturing process.

     

/

返回文章
返回