Research status on cermet/steel welding and joining
-
摘要:
钢结硬质合金具有合金钢的优良力学性能和硬质合金的高耐磨性、高硬度的特点,具有良好的性价比,如何将钢结硬质合金与大型耐磨部件金属基体形成牢固的冶金结合,已成为提高设备整体耐磨性和使用寿命的技术关键,通过总结钢结硬质合金与钢的不同冶金结合形式、原理和特点,并概述了近年来国内外学者在此领域所取得的研究成果,具体介绍了镶铸、钎焊、扩散焊、激光焊、电弧焊等连接方法的研究现状,重点总结了这些连接方法的适用范围以及在使用过程中存在的问题,特别是钢结硬质合金与钢基体的界面结合情况进行了统计分析,最后,通过对现有技术的归纳总结,展望了未来实现钢结硬质合金与钢基体良好冶金结合的研究和发展方向.
Abstract:The steel-bonded cemented carbide combines the excellent mechanical properties of alloy steel with the high wear resistance and hardness of cemented carbide, offering a compelling cost-performance ratio. Achieving a strong metallurgical bond between the steel-bonded cemented carbide and the metal substrate of large-scale wear-resistant components has become a key technological challenge in enhancing the overall wear resistance and service life of equipment. This article summarizes the different metallurgical bonding forms, principles, and characteristics of steel-bonded cemented carbide with steel, and provides an overview of the research achievements in this field by scholars at home and abroad in recent years. It specifically introduces the research status of connection methods such as casting-in, brazing, diffusion welding, laser welding, and arc welding, and summarizes the applicability and existing issues of these connection methods in practical usage, with a particular focus on statistical data and analysis of the interface bonding between steel-bonded cemented carbide and the steel substrate. Finally, through summarizing existing technologies, the article outlines future research and development directions for achieving a robust metallurgical bond between steel-bonded cemented carbide and the steel substrate.
-
Keywords:
- cermet /
- dissimilar steels /
- bonding /
- welding
-
-
表 1 钢结硬质合金与钢钎焊时常用钎料、接头结构、抗剪强度和相组成
Table 1 brazing filler metals, joint structures, shear strengths, and phase for steel-bonded carbide and steel brazing
材料 钎料 接头结构 抗剪强度RτMPa 相组成 Cu基钎料 Cu-Nb-Ti[33] TiC金属陶瓷/Ti-Nb-Cu/304SS 92.5 TiC + (βTi,Nb) + 残余Nb、Cu + Cu(s.s) Cu[34] Ti(C,N)金属陶瓷/Cu-Ni/Cu/CuMnZn/钢 195.3 (Fe,Ni) + Cu + (Cu,Ni) + Ti(C,N) + CuMnZn Cu-Mn-Co[35] TiC-NiCr金属陶瓷/CuMnCo/1Cr13 274 — Ag基钎料 Ag-Cu-Zn[36] TiC金属陶瓷/Ag-Cu-Zn/钢 105 Cu(s.s) + Ni3ZnC0.7/Cu(s.s) + Ni3ZnC0.7 +
Ag (s.s)/Cu(s.s) + Ni3ZnC0.7Ag-54Cu-33Zn[37] TiC金属陶瓷/Ag-54Cu-33Zn/钢 95.7 (Cu、Ni)、Ag(s.s) + Cu(s.s),(Cu,Ni),
(Cu,Ni) + (Fe,Ni)Ni基钎料 AgCuZnNi[38] Ti(C,N)金属陶瓷/AgCuZnNi/3Cr13 154 Ag(s.s) + Cu(s.s) AgCuZnNi[39] Ti(C,N)金属陶瓷/AgCuZnNi/铜 176.5 Ag-29Cu-26Zn-2Ni -
[1] 中华人民共和国国家质量监督检验检疫总局. 钢结硬质合金材料毛坯:GB/T 3879-2008[S]. 株洲: 株洲硬质合金集团有限公司, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Material blanks of steel bonded carbide: GB/T 3879-2008 [S]. Zhuzhou: Zhuzhou cemented carbide group Co.,LTD., 2008.
[2] 韩凤麟. 粉末冶金技术手册(精)[M]. 北京: 化学工业出版社, 2009. Han Fenglin. Powder metallurgy technical manual (Exquisite) [M]. Beijing: Chemical Industry Press, 2009.
[3] 中华人民共和国国家质量监督检验检疫总局. 粉末冶金术语:GB/T 3500-2008[S]. 长沙: 中南大学粉未冶金研究院, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Powder metallurgy-Vocabulary. GB/T 3500-2008[S]. Changsha: Powder Metallurgy Research Institute, 2008.
[4] 马一川, 张雪峰, 陈敏, 等. Mo2C/WC对金属陶瓷组织和性能的影响[J]. 钢铁钒钛, 2020, 41(2): 42 − 47. Ma Yichuan, Zhang Xuefeng, Chen Min, et al. Effect of Mo2C/WC ratio on microstructure and properties of cermet[J]. Iron Steel Vanadium Titanium, 2020, 41(2): 42 − 47.
[5] Zhang Jianfeng, Wang Lianjun, Jiang Wan, et al. Effect of TiC content on the microstructure and properties of Ti3SiC2-TiC composites in situ fabricated by spark plasma sintering[J]. Materials Science and Engineering:A, 2008, 487(7): 137 − 143.
[6] Zou Bin, Ji Wenbin, Huang Chuanzhen, et al. Effects of superfine refractory carbide additives on microstructure and mechanical properties of TiB2-TiC + Al2O3 composite ceramic cutting tool materials[J]. Journal of Alloys and Compounds:An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2014, 585(2): 192 − 202.
[7] Xue Jiaxiang, Liu Jixuan, Zhang Guojun, et al. Improvement in mechanical/physical properties of TiC-based ceramics sintered at 1500 ℃ for inert matrix fuels[J]. Scripta Materialia, 2016, 114(3): 5 − 8.
[8] Sribalaji M, Mukherjee B, Bakshi S R, et al. In-situ formed graphene nanoribbon induced toughening and thermal shock resistance of spark plasma sintered carbon nanotube reinforced titanium carbide composite[J]. Composites Part B:Engineering, 2017, 123(8): 227 − 240.
[9] Liu Shoufa Liu, Dancheng. Effect of hard phase content on the mechanical properties of TiC-316 L stainless steel cermets[J]. International Journal of Refractory Metals & Hard Materials, 2019, 82: 273 − 278.
[10] Guan Yiqi, Peng Yingbiao, Liu Yuling, et al. Effect of secondary carbides on core-rim structure and their diffusion behavior in TiC-Ni-based cermets[J]. Journal of Phase Equilibria and Diffusion, 2022, 43(2): 164 − 175. doi: 10.1007/s11669-022-00948-7
[11] Fernandes C M, Senos A M R. Cemented carbide phase diagrams: a review[J]. International Journal of Refractory Metals & Hard Materials, 2011, 29(4): 405 − 418.
[12] Kueba J, 萧玉麟. 钢结硬质合金适用性的表征[J]. 国外难熔金属与硬质材料, 1995, 11(2): 21 − 27. Kueba J, Xiao Yulin. Characterization of applicability of steel-bonded cemented carbide[J]. International Journal of Refractory Metals & Hard Materials, 1995, 11(2): 21 − 27.
[13] 刘跃, 张国赏, 魏世忠. 铁基堆焊耐磨合金的研究现状[J]. 电焊机, 2012, 42(5): 58 − 61. doi: 10.3969/j.issn.1001-2303.2012.05.014 Liu Yue, Zhang Guoshang, Wei Shizhong. Present situation in research on iron-based hardfacing alloy[J]. Electric Welding Machine, 2012, 42(5): 58 − 61. doi: 10.3969/j.issn.1001-2303.2012.05.014
[14] 陈国庆, 张秉刚, 吴振中, 等. 硬质合金与钢焊接技术的研究现状[J]. 硬质合金, 2012, 29(6): 387 − 392. doi: 10.3969/j.issn.1003-7292.2012.06.008 Chen Guoqing, Zhang Binggang, Wu Zhenzhong, et al. Research status on welding of cemented carbide to steel[J]. Cemented Carbide, 2012, 29(6): 387 − 392. doi: 10.3969/j.issn.1003-7292.2012.06.008
[15] 樊少忠, 钟黎声, 许云华, 等. 灰口铸铁表面TiC致密颗粒层的微观组织与原位形成机理分析[J]. 焊接学报, 2017, 38(9): 96 − 102. Fan Shaozhong, Zhong Lisheng, Xu Yunhua, et al. Microstructure of TiC dense particles layer and in situ formation mechanism on gray cast iron surface[J]. Transactions of the China Welding Institution, 2017, 38(9): 96 − 102.
[16] Li Yajiang, Zou Zengda, Holly Xiao, et al. Microstructure and XRD analysis in the brazing zone of a new WC-TiC-Co hard alloy[J]. Materials Research Bulletin, 2002, 37(5): 941 − 948. doi: 10.1016/S0025-5408(02)00694-3
[17] Xu Peiquan, Yao Shun, Yang Dexin, et al. Study on the formation of η phase during TIG welding[J]. Journal of Shanghai Jiaotong University Science, 2004, 9(3): 6 − 10.
[18] 赵秀娟. 硬质合金与钢熔焊界面组织与性能[D]. 大连: 大连交通大学, 2004. Zhao Xiujuan. Microstructures and properties of fusion welding interface between cemented carbides and steels[D]. Dalian: Dalian Jiaotong University, 2004.
[19] 宋以国, 赵秀娟, 杨德新, 等. YG30硬质合金与45钢TIG焊界面组织的分析[J]. 硬质合金, 2005, 22(2): 69 − 73. Song Yiguo, Zhao Xiujuan, Yang Dexin, et al. Microstructureanalysis of the TIG interface of YG30 cemented carbide and steel45 [J]. Cemented Carbide, 2005, 22(2): 69 − 73.
[20] Zhou G T, Huang T, Guo Y L, et al. Research on microstructure and properties of boron/Q235 steel laser welded dissimilar joints under synchronous thermal field[J]. China Welding, 2023, 32(4): 38 − 48.
[21] 林伟伟. YG20/42CrMo扩散焊接层的微结构及性能研究[D]. 株洲: 湖南工业大学, 2022. Lin Weiwei. Microstructure and properties of YG20/42CrMo diffusion welding layer[D]. Zhuzhou: Hunan University of Technology, 2022.
[22] 中华人民共和国国家质量监督检验检疫总局.铸造术语: GB/T 5611-2017 [S]. 沈阳: 中国机械科学总院集团沈阳铸造研究所有限公司, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Foundry terminology: GB/T5611-2017 [S]. Shenyang: China Academy of Machinery Shenyang Research Institute of Foundry Co., Ltd., 2017.
[23] 苏春霞, 徐相斌. 辊压机冷镶柱钉辊套的失效分析[J]. 新世纪水泥导报, 2018, 24(1): 45 − 46. Su Chunxia, Xu Xiangbin. Failure analysis of roller sleeve for cold studded roller press[J]. Cement Guide for New Epoch, 2018, 24(1): 45 − 46.
[24] 张长涛, 谢敬佩, 王文焱, 等. 铸造工艺对超高锰钢镶铸复合材料锤头的组织及结合的影响[J]. 热加工工艺, 2010, 39(5): 42 − 44,47. doi: 10.3969/j.issn.1001-3814.2010.05.013 Zhang Changtao, Xie Jingpei, Wang Wenyan, et al. Effects of casting technique on microstructure and connection mechanism of super-high manganese steel composite hammer prepared by casting process[J]. Hot Working Technology, 2010, 39(5): 42 − 44,47. doi: 10.3969/j.issn.1001-3814.2010.05.013
[25] 史秋月, 曾大新, 颜士杰. 固-液复合Cr12MoV钢-球墨铸铁结合界面研究[J]. 铸造, 2018, 67(6): 483 − 486,491. Shi Qiuyue, Zen Daxin, Yan Shijie. Research on bonding interface of liquid-solid composite casting of Cr12MoV steel-ductile iron[J]. China Foundry, 2018, 67(6): 483 − 486,491.
[26] 全国焊接标准化技术委员会. 钎焊术语: GB/T33148-2016[S]. 哈尔滨: 中国机械科学总院集团哈尔滨焊接研究所有限公司, 2016. Soldering and brazing terms. Brazing terminology: GB/T33148-2016[S]. Harbin: Harbin Welding Institute Limited Company, 2016.
[27] Li Jia, Sheng Guangmin, Huang Li. Additional active metal Nb in Cu–Ni system filler metal for brazing of TiC cermet/steel[J]. Materials Letters, 2015, 156(11): 10 − 13.
[28] 宫红亮. 钢结硬质合金TM60与钢火焰钎焊工艺的研究[D]. 郑州: 郑州大学, 2013. Gong Hongliang. Study on brazing process of steel-bonded carbide TM60 and steel flame brazing[D]. Zhengzhou: Zhengzhou University, 2013.
[29] Feng Jicai, Zhang Lixia. Interface structure and mechanical properties of the brazed joint of TiC cermet and steel[J]. Journal of the European Ceramic Society, 2006, 26(7): 1287 − 1292. doi: 10.1016/j.jeurceramsoc.2005.01.043
[30] Wang Y, Zheng X Y, Wei Y R, et al. Microstructure evolution and mechanical properties of the TiB2-TiC-SiC composite ceramic and Nb brazed joint[J]. Journal of Manufacturing Processes, 2023, 92: 179 − 188.
[31] He Hu, Du Xueming, Yao Zhenhua, et al. Microstructure ofTi(C, N)-based cermet and 45 steel joint brazed with multilayered composite filler[J]. Materials For Mechanical Engineering, 2018, 42(10) : 18 − 23.
[32] Zhang Lixia, Feng Jicai. Effect of reaction layers on the residual stress of the brazed TiC cermets/steel joints[J]. Journal of Materials Science & Technology, 2009, 25(2): 203 − 207.
[33] Li Jia, Sheng Guangmin, Huang Li, et al. Ti-Nb-Cu stress buffer layer for TiC cermet/304 stainless steel diffusion bonding[J]. Rare Metal Materials & Engineering, 2016, 45(3): 555 − 560.
[34] 朱林正, 郑勇, 黄琦, 等. Ti(C, N)基金属陶瓷与45钢钎焊接头显微组织和剪切强度的研究[J]. 硬质合金, 2015, 32(5): 294 − 299. Zhu Linzheng, Zheng Yong, Huang Qi, et al. Study on microstructure and shear strength of the joints of Ti(C, N)-based cermet to 45 steel[J]. Cemented Carbide, 2015, 32(5): 294 − 299.
[35] 王全兆, 刘越, 张玉政, 等. TiC/NiCr金属陶瓷与1Cr13不锈钢的真空钎焊[J]. 焊接学报, 2006, 27(8): 43 − 46. doi: 10.3321/j.issn:0253-360X.2006.08.012 Wang Quanzhao, Liu Yue, Zhang Yuzheng, et al. Vacuum brazing between TiC/NiCr cermets and 1Cr13 stainless steel[J]. Transactions of the China Welding Institution, 2006, 27(8): 43 − 46. doi: 10.3321/j.issn:0253-360X.2006.08.012
[36] Zhang L X, Feng J C, Liu H B. High frequency induction brazing of TiC cermets to steel with Ag–Cu–Zn foil[J]. Metal Science Journal, 2008, 24(5): 623 − 626.
[37] Zhang L, Feng J, Zhang B, et al. Ag–Cu–Zn alloy for brazing TiC cermet/steel[J]. Materials Letters, 2005, 59(1): 110 − 113. doi: 10.1016/j.matlet.2004.08.029
[38] 陈洪生, 冯可芹, 熊计, 等. Ti(C, N)基金属陶瓷与3Cr13不锈钢的真空钎焊[J]. 四川大学学报(工程科学版), 2012, 44(S1): 273 − 277. Chen Hongsheng, Feng Keqin, Xiong Ji, et al. Vacuum brazing of Ti(C, N)-based cermets and 3Cr13 stainless steel[J]. Advanced Engineering Sciences, 2012, 44(S1): 273 − 277.
[39] Ye Dameng, Xiong Weihao, Zhang Xiuhai, et al. Microstructure and shear strength of the brazed joint of Ti(C, N)-based cermet to steel[J]. Rare Metals, 2010(1): 72 − 77.
[40] Jing Y, Yang Q Q, Xiong W H, et al. Microstructure and shear strength of brazed joints between Ti(C,N)-based cermet and steel with CuAgTi filler metal[J]. Journal of Alloys and Compounds, 2016, 682: 525 − 530. doi: 10.1016/j.jallcom.2016.04.298
[41] 全国焊接标准化技术委员会. 焊接术语: GB/T 3375-1994[S]. 哈尔滨: 中国机械科学总院集团哈尔滨焊接研究所有限公司, 1994. Soldering and brazing terms. Welding terminology: GB/T 3375-1994[S]. Harbin: Harbin Welding Institute Limited Company, 1994.
[42] 李佳, 盛光敏, 黄利. Ti/Nb作中间层脉冲加压扩散连接TiC金属陶瓷与不锈钢[J]. 材料工程 2017, 45(3): 54 − 59. Li Jia, Sheng Guangmin, Huang Li. Impulse Stainless Pressuring Diffusion Bonding of TiC Cermet to Steel Using Ti/Nb Interlaye[J]. Journal of Materials Engineering, 2017, 45(3): 54 − 59.
[43] 张誉喾, 马志鹏, 张旭昀. 硬质合金与钢异种金属焊接工艺的研究现状[J]. 化工机械, 2016, 43(4): 441 − 445. Zhang Yuku, Ma Zhipeng, Zhang Xuyun. The research status of welding procedure for cemented carbide and steel dissimilar[J]. Chemical Engineering & Machinery, 2016, 43(4): 441 − 445.
[44] 李淳, 郑祖金, 亓钧雷, 等. AgCu + SiC复合钎料中SiC含量对Al2O3/TC4接头组织和性能的影响[J]. 焊接学报, 2019, 40(12): 11 − 16. Li Chun, Zheng Zujin, Qi Junlei, et al. The effect of SiC content in AgCu + SiC composite solder on the microstructure and properties of Al2O3 / TC4 joints was investigated[J]. Transactions of the China Welding Institution, 2019, 40(12): 11 − 16.
[45] Cao J, Song X G, Wu L Z, et al. Characterization of Al/Ni multilayers and their application in diffusion bonding of TiAl to TiC cermet[J]. Thin Solid Films, 2012, 520(9): 3528 − 3531. doi: 10.1016/j.tsf.2012.01.001
[46] Hattali M L, Mesrati N, Tréheux D. Electric charge trapping, residual stresses and properties of ceramics after metal/ceramics bonding[J]. Journal of the European Ceramic Society, 2012, 32(4): 717 − 725. doi: 10.1016/j.jeurceramsoc.2011.10.025
[47] Hattali M L, Valette S, Ropital F, et al. Study of SiC-nickel alloy bonding for high temperature applications[J]. Journal of the European Ceramic Society, 2009, 29(4): 813 − 819. doi: 10.1016/j.jeurceramsoc.2008.06.035
[48] Cao J, Song X G, Li C, et al. Brazing ZrO2 ceramic to Ti–6Al–4V alloy using NiCrSiB amorphous filler foil: Interfacial microstructure and joint properties[J]. Materials Characterization, 2013, 81(7): 85 − 91.
[49] Jia L, Guangmin S. Diffusion bonding of TiC cermet to stainless steel using impulse pressuring with Ti-Nb interlayer[J]. Rare Metal Materials & Engineering, 2017, 46(4): 882 − 887.
[50] 匡泓锦. 液-固扩散焊复合连接Ti(C, N)与40Cr[D]. 镇江: 江苏科技大学, 2014., Kuang Hongjin. The research on technology of liquid phase diffusion welding with pulse current auxiliary of Ti(C, N)/40Cr[D]. Zhenjiang: Jiangsu University of Science and Technology, 2014.
[51] 吴铭方, 匡泓锦, 王斐, 等. 液-固扩散焊复合连接Ti(C, N)与40Cr的界面行为与接头强度[J]. 焊接学报, 2014, 35(5): 5 − 8. Wu Mingfang, Kuang Hongjin, Wang Fei, et al. Interfacial behavior and joint strength of Ti(C, N) and 40Cr joints obtained by liquid-solid diffusion hybrid bonding method[J]. Transactions of the China Welding Institution, 2014, 35(5): 5 − 8.
[52] 黄宇. 硬质合金YG8与D6A高强度钢激光焊接行为研究[D]. 长沙: 湖南大学, 2016. Huang Yu. Study on laser welding behavior of cemented carbide YG8 and D6A high strength steel[D]. Changsha: Hunan University, 2016.
[53] Pardal G, Meco S, Ganguly S, et al. Dissimilar metal laser spot joining of steel to aluminium in conduction mode[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73: 365 − 373.
[54] Himanshu S Maurya, Lauri Kollo, Marek Tarraste. Effect of the laser processing parameters on the selective laser melting of TiC–Fe-based cermets[J]. Journal of Manufacturing and Materials Processing, 2022(6): 35.
[55] 曹晓莲, 徐培全, 曹卓玥, 等. YG20/45#钢激光焊焊缝组织与界面元素扩散研究[J]. 中国激光, 2015, 42(3): 78 − 84. Cao Xiaolian, Xu Peiquan, Cao Zhuoyue, et al. Research on microstructure and element diffusion in YG20/45# steel laser welds[J]. Chinese Journal of Lasers, 2015, 42(3): 78 − 84.
[56] 陈刚, 邓人钦, 薛伟, 等. 硬质合金与钢焊接的研究进展[J]. 材料导报, 2022, 36(22): 249 − 257. Chen Gang, Deng Renqin, Xue Wei, et al. Research progress of welding between cemented carbide and steel[J]. Materials Reports, 2022, 36(22): 249 − 257.
[57] 王悦悦. 中间层厚度对硬质合金/不锈钢激光焊接头组织性能的影响[D]. 上海: 上海工程技术大学, 2017. Wang Yueyue. Effect of interlayer thickness on microstructure and properties of cemented carbide/stainless steel as-welded joints by laser welding[D]. Shanghai: Shanghai University Of Engineering Science, 2017.
[58] 张一鸣. 过渡层对硬质合金与45钢激光焊的影响研究[D]. 大连: 大连交通大学, 2019. Zhang Yiming. Study on the effect of transition layer on laser welding of cemented carbide and 45 steel[D]. Dalian: Dalian Jiaotong University, 2019.
[59] 杜则裕. 焊接冶金学: 基本原理[M]. 北京: 机械工业出版社, 2018. Du Zeyu. Welding metallurgy: basic principles[M]. Beijing: China Machine Press, 2018.
[60] 何旭初, 宾建林. TiC-HMS一种可用普通电焊焊接的金属陶瓷超级耐磨材料[J]. 湖南冶金, 2001(6): 46. He Xuchu, Bin Jianlin. TiC-HMS A kind of metal ceramic super wear-resistant material which can be welded by ordinary electric welding. [J]. Hunan Metallurgy, 2001(6): 46.
[61] 马丁. 硬质合金与钢MIG焊组织及性能研究[D]. 上海: 上海工程技术大学, 2014. Ma Ding. Study on microstructure and property of MIG welds between cemented carbide and steel[D]. Shanghai: Shanghai University of Engineering Science, 2014.
[62] 赵秀娟, 杨德新. 硬质合金YG30/45钢TIG焊连接的研究[J]. 新技术新工艺, 2004(3): 34 − 35. doi: 10.3969/j.issn.1003-5311.2004.03.016 Zhao Xiujuan, Yang Dexin. Welding of hard alloy YG30 and steel 45 via TIG[J]. New Technology & New Process, 2004(3): 34 − 35. doi: 10.3969/j.issn.1003-5311.2004.03.016
[63] García R, López V H, Bedolla E, et al. MIG welding process with indirect electric arc[J]. Journal of Materials Science Letters, 2002, 21(24): 1965 − 1967
[64] García R, López V H. A comparative study of the MIG welding of Al/TiC composites using direct and indirect electric arc processes[J]. Journal of Materials Science, 2003, 38(12): 2771 − 2779.
[65] 孔宪武. 复合铲刃, 江苏: CN2310095 [P]. 1999-03-10. Kong Xianwu. Composite blade, Jiangsu: CN2310095 [P]. 1999-03-10.
[66] 李石林, 谢裕安. 电焊硬质合金刀齿破岩滚刀──当前最耐磨的新材质滚刀[J]. 水文地质工程地质, 1994(3): 58 − 60. Li Shilin, Xie Yu'an. Welded carbide cutter teeth rock-breaking hob ──the most wear-resistant new material hob at present[J]. Hydrogeology & Engineering Geology, 1994(3): 58 − 60.
[67] Wei Wei, Zhiquan Huang, Haiyan Zhang, et al.Effect of the welding thermal cycle on the microstructure and mechanical properties of TiC cermet HAZ using the gleeble simulator[J]. Coatings, 2023, 13: 476.
[68] Wei Wei. The influence of different alloyed welding materials on the microstructure and mechanical properties of welded interface in TiC cermet MIG welding bonds[J]. Materials Letters, 2024, 361: 135641
[69] 叶大萌, 熊惟皓, 徐华安. 金属陶瓷与金属焊接技术的研究现状与展望[J]. 材料导报, 2006, 20(8): 72 − 75. doi: 10.3321/j.issn:1005-023X.2006.08.021 Ye Dameng, Xiong Weihao, Xu Huaan. Current status and development of welding technique of cermet/metal[J]. Materials Reports, 2006, 20(8): 72 − 75. doi: 10.3321/j.issn:1005-023X.2006.08.021
[70] Gao Jubin, Wang Yangwei, Zhang Lingyu, et al. Study on the ballistic performance of ceramic composite armor with different adhesive[J]. Advanced Materials Research, 2010(10): 308 − 313.
[71] Rajiv Asthana, Mrityunjay Singh, Natalia Sobczak. The role of wetting and reactivity in infiltration of ceramic-metal composites[J]. Advances in Ceramic Coatings and Ceramic-Metal Systems: Ceramic Engineering and Science Proceedings, 2005, 26: 248 − 261
[72] 张世俊. TiC/TiN钢结硬质合金及其高锰钢颚板镶嵌强化技术的研究[D]. 郑州: 郑州大学, 2015. Zhang Shijun. Research of TiC/TiN steel bonded carbide and high manganese steel jaw plate embedded reinforcement technology[D]. Zhengzhou: Zhengzhou University, 2015.