高级检索

基于GA-BP神经网络的多层多道焊工艺预测及优化

王天琪, 孟锴权, 王传睿

王天琪, 孟锴权, 王传睿. 基于GA-BP神经网络的多层多道焊工艺预测及优化[J]. 焊接学报, 2024, 45(5): 29-37. DOI: 10.12073/j.hjxb.20230523001
引用本文: 王天琪, 孟锴权, 王传睿. 基于GA-BP神经网络的多层多道焊工艺预测及优化[J]. 焊接学报, 2024, 45(5): 29-37. DOI: 10.12073/j.hjxb.20230523001
WANG Tianqi, MENG Kaiquan, WANG Chuanrui. Prediction and optimization of multi-layer and multi-pass welding process parameters based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 29-37. DOI: 10.12073/j.hjxb.20230523001
Citation: WANG Tianqi, MENG Kaiquan, WANG Chuanrui. Prediction and optimization of multi-layer and multi-pass welding process parameters based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 29-37. DOI: 10.12073/j.hjxb.20230523001

基于GA-BP神经网络的多层多道焊工艺预测及优化

基金项目: 国家自然科学基金资助项目(51975410);天津市“项目 + 团队”重点培养专项资助 (XC202053);天津市自然科学基金项目(23JCYBJC00040)
详细信息
    作者简介:

    王天琪,博士,副教授;主要研究方向为工业机器人智能控制、金属电弧增材制造、焊接自动化控制技术;Email: Wtq0622@163.com

  • 中图分类号: TG 444

Prediction and optimization of multi-layer and multi-pass welding process parameters based on GA-BP neural network

  • 摘要:

    针对目前多层多道焊工艺参数的选择问题,利用遗传算法(genetic algorithm, GA)对BP神经网络(back propagation neural network, BPNN)进行优化,提出多层多道焊成形预测及焊接工艺参数优化方法,旨在为工艺参数选取提供有效指导,提高焊接生产效率及焊接质量. 首先通过分析多层多道焊图像,提出采用三次样条插值法与自适应分段法进行特征点识别,然后根据焊接顺序、焊道工艺建立焊接过程各焊道横截面积形状预测模型,运用解析法进行焊接工艺参数预测,进一步结合不同焊道工艺参数优选原则,采用改进神经网络进行焊接工艺参数优化,从而建立具有实时性的焊接工艺参数与焊缝轮廓关系模型.结果表明,该方法对多层多道焊中各焊道焊接工艺参数提供有效预测,试验结果满足实际需求,对提高焊接产品质量、简化焊接工艺参数选取具有实际意义.

    Abstract:

    To solve the selection of process parameters for multi-layer and multi-pass welding, a strategy based on GA-BP neural network is proposed to predict the weld forming and optimize welding process parameters in the multi-layer and multi-pass welding. Firstly, by analyzing welding images, a cubic spline interpolation and adaptive segmentation methods is proposed to identify the feature points in multi-layer and multi-pass welding. Then, a prediction model for the cross-sectional shape of each weld bead during the welding process is established, and an analytic method is used to predict the welding process parameters. Further combining the principles of optimizing different welding process parameters, an improved neural network is used to optimize multi-layer and multi-pass welding process parameters, the real-time model for the relationship between welding process parameters and weld formation is established. Finally, the feasibility of the multi-layer and multi-pass welding process parameter selection strategy proposed in this paper was verified through experiments. The experiment shows that this method provides effective prediction of welding process parameters for each pass in multi-layer and multi-pass welding, and the experimental results meet practical needs.

  • 搅拌摩擦焊(friction stir welding, FSW)作为一种固相焊接技术,具有焊缝质量高、变形小等优点[1-2]. 目前加工制造业对焊接智能化、高效化的要求日益上升,机器人搅拌摩擦焊得以更普遍的应用.在实际大型结构的FSW生产中,由于接头形式、板材加工精度以及工装夹具装配质量问题,焊接过程容易产生较大的间隙,对接头的成形和性能极为不利[3-4],当工件之间的间隙超过工件厚度的10%时,很难获得无缺陷质量良好的接头[5]. 间隙的存在导致焊核区(weld nugget zone,WNZ)材料流动不充分,焊缝出现孔洞和隧道等缺陷[6]. 同时,工件被塑化的材料流入间隙,弥补材料缺失使得焊缝位置减薄严重,降低接头承载能力[7].

    研究人员[8-9]采用粉末、焊丝或者补偿条作为填充材料对大间隙下的工件进行FSW,得到成形良好无缺陷的接头,接头与常规FSW接头力学性能吻合,然而,当焊接速度过快时,这些填充材料很容易飞出间隙,从而形成缺陷. 同时填充材料需要在焊前放置在间隙内,针对复杂结构间隙及焊接过程中产生的间隙,填充材料的尺寸以及填料的连续性受到限制.

    基于传统搅拌摩擦焊方法,填充材料旁轴送料,将FSW与填料过程同时进行,实现大间隙机器人搅拌摩擦填丝焊,并对其接头进行盐雾腐蚀试验,分析搅拌摩擦填丝焊接头不同区域的腐蚀行为差异.搅拌摩擦填丝焊提高了FSW对工况条件的适应性,适用于高铁、船舶和飞机上大型及复杂结构焊缝,有望为工程实际应用提供理论依据和技术支撑.

    试验材料为5A06铝合金轧制板材,尺寸为300 mm × 70 mm × 3 mm,填充材料为直径1.6 mm的5B06丝材. 机器人搅拌摩擦填丝焊焊接过程示意图及焊具尺寸如图1所示,对接板材焊接间隙为2 mm. 填充丝材经过高推力送丝系统从送丝孔连续输送到储料腔内部,高速旋转的螺杆将金属丝材剪切成粒状材料,粒状材料在自身重力及与螺杆侧壁的摩擦力的影响下,在储料腔内塑化从底部的缝隙流出. 轴向压力使储料腔与板材之间产生挤压效果,粒状材料发生变形堆积并被塑化. 在旋转的搅拌针的驱动作用下,塑化的填充材料发生流动并实现与基材的连接. 试验所采用的焊接工艺参数为转速3 000 r/min,焊接速度200 mm/min,送丝速度1.8 m/min,轴向压力5 000 N,倾角1.5°.

    图  1  焊接过程示意图及焊具结构
    Figure  1.  Welding process and the welding tool structure. (a) schematic illustration of wire-feeding friction stir welding; (b) dimensions of the welding tool

    图2为机器人搅拌摩擦填丝焊接头焊缝表面形貌. 焊缝表面光滑成形良好,无沟槽缺陷,在搅拌针的驱动作用下,塑化的填充材料发生流动后沉积弥补了间隙位置材料缺失,同时焊缝有一定程度的增厚,提高了接头的承载能力.

    图  2  焊缝表面形貌
    Figure  2.  Surface morphologies of the welds

    图3为焊缝整体微观形貌及不同区域的微观组织. 焊接接头填充材料与基体母材结合良好,焊缝无孔洞及隧道缺陷,由于搅拌针的存在,搅拌针促进塑化的丝材和基材发生流动,提高了填充材料与基材的结合效果. 丝材经过螺杆的剪切及静轴肩的挤压作用,与焊核区受到搅拌针的搅拌作用一样,填充材料也经历了大塑性变形,发生动态再结晶,形成细小的等轴晶.

    图  3  搅拌摩擦填丝焊接头微观组织
    Figure  3.  Microstructures of wire-feeding friction stir welding. (a) microstructures of the cross-section; (b) top interface; (c) thermo-mechanically affected zone interface; (d) filler materials zone

    搅拌摩擦填丝焊接头经过7天盐雾腐蚀试验后接头各区域腐蚀形貌如图4所示. 接头表面均发生了点蚀坑的萌生, 表面出现腐蚀产物;焊核区及填充材料区域的点蚀坑尺寸较小,且分布较为均匀;母材点蚀坑分布不均匀,尺寸较大.热力影响区(thermo- mechanically affected zone,TMAZ)的点蚀坑随晶粒分布特征呈流线分布,热影响区(heat-affected zone,HAZ)的点蚀坑尺寸较大,且出现一定的聚集现象,点蚀坑发生扩展.焊核区和填充材料区表现出更好的耐腐蚀性能.

    图  4  不同区域盐雾腐蚀形貌
    Figure  4.  Salt spray corrosion morphologies in different zones. (a) WNZ; (b) filler materials zone; (c)TMAZ; (d) HAZ; (e)BM

    第二相分布及尺寸对点蚀坑的形成有巨大影响,第二相和基体之间形成微电偶会导致腐蚀现象发生.焊核区经过塑性变形后第二相颗粒被打碎,尺寸较小分布也更均匀,进而发生腐蚀现象后点蚀坑分布均匀细小;填充材料区域拥有更小且弥散分布的第二相颗粒,填充材料的加入增强了焊核区的耐蚀性.经过轧制后的母材中第二相颗粒尺寸较大且分布不均匀,耐蚀性较差易形成较大的点蚀坑;热力影响区点蚀坑呈流线分布,而热影响区第二相颗粒发生聚集长大,发生点蚀后有利于点蚀坑的扩展,导致热影响区的耐蚀性较差.

    图5为热影响区点蚀坑SEM图及附近元素分布.发现在第二相Al6(FeMn)附近产生了明显的腐蚀现象, 点蚀坑发生扩展. 在盐雾环境中,铝合金表面虽然存在一层氧化膜,但是随着溶液中Cl的侵入,Cl破坏了表面氧化膜,促进点蚀现象发生. 同时热影响区第二相颗粒Al6(FeMn)与铝基体之间存在腐蚀电位差形成原电池,由于Al6(FeMn)电位高于铝基体[10],第二相颗粒在腐蚀过程中充当阴极,促使周围基体发生腐蚀,因此在第二相附近形成环形腐蚀区域产生腐蚀坑并向四周扩展. 当第二相尺寸较大时,周围基体溶解的范围增大,点蚀坑的尺寸也会更大. 基于元素分布图可以看出,在腐蚀坑附近Al元素含量减少,点蚀坑内金属发生溶解,点蚀孔内阳离子浓度升高,Cl就会不断侵入以维持平衡.随着Cl浓度的升高发生水解,导致点蚀坑内部氢离子浓度升高,溶液酸化,促使基体进一步溶解,点蚀坑发生扩展.

    图  5  热影响区腐蚀产物及元素分布
    Figure  5.  Corrosion products and element distribution of HAZ

    图6为经过7天盐雾腐蚀接头、未腐蚀接头及母材的拉伸测试结果.未腐蚀接头抗拉强度为388.9 MPa ± 1.4 MPa,断后伸长率为20.5% ± 0.4%,分别达到母材的99%及94%. 经过7天盐雾腐蚀后接头抗拉强度降低到356.6 MPa ± 1.2 MPa,断后伸长率为18.1% ± 0.9%,盐雾腐蚀后接头强度降低了8.3%,断后伸长率下降了11.7%,盐雾腐蚀试验后接头仍保持较优的力学性能. 盐雾腐蚀环境造成焊缝表面出现点蚀坑,而富Cl环境使基体金属进一步溶解,点蚀坑发生扩展,减少了接头有效承载面积,在承受载荷时其易成为薄弱位置,裂纹在点蚀坑位置产生,降低了接头承载能力.

    图  6  焊接接头抗拉强度及断后伸长率
    Figure  6.  Ultimate tensile strength and elongation of joints

    (1) 实现了大尺寸间隙下机器人搅拌摩擦填丝焊,焊接过程与填料过程同时进行,提高了搅拌摩擦焊对接头间隙的容忍性,消除了焊缝减薄问题.

    (2) 填充材料与基材实现了良好的冶金连接,经过剧烈塑性变形后,焊核区和填充材料发生动态再结晶,表现为细小的等轴晶粒.

    (3) 未腐蚀接头抗拉强度达到388.9 MPa ± 1.4 MPa,断后伸长率为20.5% ± 0.4%,分别达到母材的99%及94%. 在腐蚀过程中焊核区和填充材料区耐腐蚀性能优于热影响区与母材,点蚀坑细小且均匀分布,7天盐雾腐蚀后接头保持优异的耐蚀性能.

  • 图  1   试验平台及Q235低碳钢板示意图

    Figure  1.   Test platform and test plate. (a) experimental platform; (b) schematic diagram of low carbon steel plate with material Q235

    图  2   试验焊道排序示意图

    Figure  2.   Schematic diagram of welding sequence for experimental welding

    图  3   图像处理

    Figure  3.   Image processing. (a) original drawing; (b) traditional image processing; (c) cubic spline interpolation method; (d) adaptive segmented slope method

    图  4   遗传算法优化神经网络流程图

    Figure  4.   Neural network flow chart optimization by genetic algorithm

    图  5   神经网络结构

    Figure  5.   Neural network structure

    图  6   叠加求交

    Figure  6.   Intersection by suporposition

    图  7   算法流程图

    Figure  7.   Algorithm flow chart

    图  8   训练与测试结果

    Figure  8.   Training and test results. (a) training set; (b) training set

    图  9   相关性示意图

    Figure  9.   Correlation diagram. (a) relationship between welding speed and weld width; (b) relationship between welding speed and weld height

    图  10   焊道面积与焊接速度和送丝速度的关系

    Figure  10.   Relationship between pass area and welding speed and wire feeding speed

    图  11   相关示意图

    Figure  11.   Correlation diagram. (a) relationship between welding speed and cross section area; (b) relationship between wire feeding speed and pass cross section area

    图  12   试验部分图像采集

    Figure  12.   Experimental result image. (a) top view; (b) oblique drawing

    表  1   试验工艺参数

    Table  1   Test process parameters

    焊接速度
    vh/(mm·s−1)
    送丝速度
    vs/(m·min−1)
    焊接电流
    I/A
    电弧电压
    U/V
    3 ~ 73 ~ 789 ~ 17319.7 ~ 22.3
    下载: 导出CSV

    表  2   部分处理试验数据

    Table  2   Partial processing of test data

    组号焊接工艺参数 焊缝形貌
    送丝速度
    vs/(m·min−1)
    焊接速度
    vh/(mm·s−1)
    焊缝宽度
    W/mm
    焊缝高度
    H/mm
    13.003.00 7.802.96
    23.004.007.612.50
    33.006.506.502.36
    43.404.508.2672.36
    53.406.007.482.173
    63.803.509.102.70
    73.805.508.2062.24
    84.206.007.1672.30
    94.206.506.9072.253
    105.003.0011.9333.44
    下载: 导出CSV

    表  3   试验结果对比

    Table  3   Comparison of test results

    送丝速度
    vs/(m·min−1)
    焊接速度
    vh/(mm·s−1)
    平板成形
    面积Ss/mm2
    打底焊
    面积Sp/mm2
    填充焊第1道
    面积Sa/mm2
    填充焊第2道
    面积Sb/mm2
    盖面焊第1道
    面积S1/mm2
    盖面焊第2道
    面积S2/mm2
    盖面焊第3道
    面积S3/mm2
    3.052.912.7762.7852.8112.8412.8492.918
    3.443.463.2973.2053.3113.3123.3583.4
    3.452.992.82.8492.8192.8312.9023.032
    3.462.712.6732.6392.6722.562.6832.734
    3.853.193.0153.1013.0063.0423.0863.17
    下载: 导出CSV
  • [1] 胡丹, 吕波, 王静静, 等. 焊缝表面缺陷激光视觉传感 HOG-SVM 的检测方法[J]. 焊接学报, 2023, 44(1): 56 − 62.

    Hu Dan, Lü Bo, Wang Jingjing, et al. Study on HOG-SVM detection method of weld surface de fects using laser visual sensing[J]. Transactions of the China Welding Institution, 2023, 44(1): 56 − 62.

    [2] 李志强. 不同焊接工艺参数对焊缝组织的影响[J]. 焊接技术, 2019, 48(12): 20 − 23.

    Li Zhiqiang. Effects of different welding process parameters on weld microstructure[J]. Welding Technology, 2019, 48(12): 20 − 23.

    [3] 贾剑平, 徐坤刚, 李志刚. 改进型BP网络在优化焊接工艺参数中的应用[J]. 热加工工艺, 2008(21): 98 − 100. doi: 10.3969/j.issn.1001-3814.2008.21.029

    Jia Jianping, Xu Kungang, Li Zhigang. Application of improved neural network in optimizing welding parameter[J]. Hot Working Technology, 2008(21): 98 − 100. doi: 10.3969/j.issn.1001-3814.2008.21.029

    [4] 张恩慧, 苟建军. 基于Matlab/GUI的SMAW焊接工艺参数优化系统[J]. 热加工工艺, 2015, 44(15): 195 − 197,200.

    Zhang Enhui, Gou Jianjun. Process parameter optimization system of SMAW based on Matlab/Gul[J]. Hot Working Technology, 2015, 44(15): 195 − 197,200.

    [5]

    Chen F F, Xiang J, Thomas D G, et al. Model-based parameter optimization for arc welding process simulation[J]. Applied Mathematical Modelling, 2020, 81(5): 386 − 400.

    [6]

    Zhang Ke, Chen Yixin, Zheng Jian, et al. Adaptive filling modeling of butt joints using genetic algorithm and neural network for laser welding with filler wire[J]. Journal of Manufacturing Processes, 2017, 30(12): 553 − 561.

    [7]

    Shanmugasundar G, Karthikeyan B, Santhosh Ponvell P, et al. Optimization of process parameters in TIG welded joints of AISI 304L-Austenitic stainless steel using taguchi’s experimental design method[J]. Materials Today: Proceedings, 2019, 16: 1188 − 1195.

    [8] 张恒铭, 石玗, 李春凯, 等. 工艺参数对自保护药芯焊丝焊接烟尘的影响[J]. 焊接学报, 2020, 41(11): 31 − 37. doi: 10.12073/j.hjxb.20200108001

    Zhang Hengming, Shi Yu, Li Chunkai, et al. Effect of process parameters on welding fume of selfshielded flux cored wire[J]. Transactions of the China Welding Institution, 2020, 41(11): 31 − 37. doi: 10.12073/j.hjxb.20200108001

    [9] 郭磊, 李思豪, 郭利霞, 等. 基于改进MULTIMOORA方法的PCCP焊接工艺参数优选[J]. 焊接学报, 2022, 43(3): 74 − 79. doi: 10.12073/j.hjxb.20211018001

    Guo Lei, Li Sihao, Guo Lixia, et al. Optimization of PCCP welding process parameters based on improved MULTIMOORA method[J]. Transactions of the China Welding Institution, 2022, 43(3): 74 − 79. doi: 10.12073/j.hjxb.20211018001

    [10] 张华军, 张广军, 蔡春波, 等. 厚板弧焊机器人自定义型焊道编排策略[J]. 焊接学报, 2009, 30(3): 61 − 64. doi: 10.3321/j.issn:0253-360X.2009.03.016

    Zhang Huajun, Zhang Guangjun, Cai Chunbo, et al. Self-defining path layout strategy for thick plate arc welding robot[J]. Transactions of the China Welding Institution, 2009, 30(3): 61 − 64. doi: 10.3321/j.issn:0253-360X.2009.03.016

    [11] 郑银湖, 宋永胜, 邓静. 基于simufact. welding的中厚板多层多道焊数值模拟分析[J]. 电子世界, 2021, 611(5): 95 − 97.

    Zheng Yinhu, Song Yongsheng, Deng Jing. Numerical simulation analysis of multi-layer and multi-pass welding of medium thick plate based on simufact welding[J]. Electronics World, 2021, 611(5): 95 − 97.

    [12] 喻宁娜, 莫胜撼, 戴建树. 基于激光视觉传感的焊缝图像阈值分割法研究[J]. 焊接, 2015(5): 21 − 24, 69. doi: 10.3969/j.issn.1001-1382.2015.05.006

    Yu Ningna, Mo Shenghan, Dai Jianshu. Threshold segmentation methods of weld image based on laser vision[J]. Welding & Joining, 2015(5): 21 − 24, 69. doi: 10.3969/j.issn.1001-1382.2015.05.006

    [13]

    Hsieh, Hou, Andrews, et al. Cubic splines for image interpolation and digital filtering[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1978, 26(6): 508 − 517. doi: 10.1109/TASSP.1978.1163154

    [14]

    Sagi Filin, Norbor Pfeifer. Segmentation of airborne laser scanning data using a slope adaptive neighborhood[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 71 − 80.

    [15] 周方明, 孙红辉, 宋辉, 等. CMT窄间隙多层多道焊接工艺参数对焊缝成形的影响[J]. 江苏科技大学学报(自然科学版), 2011, 25(2): 126 − 130.

    Zhou Fangming, Sun Honghui, Song Hui, et al. Effect of CMT multi-layer narrow gap welding parameters on weld formation[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2011, 25(2): 126 − 130.

    [16] 陈振款, 何建萍, 李芳, 等. 基于BP神经网络薄板P-PAW搭接的间隙自适应工艺参数优化[J]. 材料科学与工艺, 2024, 32(1): 18 − 24.

    Chen Zhenkuan, He Jianping, Li Fang, et al. Optimization of adaptive process parameters for P-PAW lap welding gap of sheet metal based on BP neural network[J]. Materials Science and Technology, 2024, 32(1): 18 − 24.

    [17] 徐健宁, 张华, 胡瑢华, 等. 熔焊快速成型中焊接工艺参数与焊缝几何尺寸的关系[J]. 焊接技术, 2008(4): 10 − 13. doi: 10.3969/j.issn.1002-025X.2008.04.004

    Xu Jianning, Zhang Hua, Hu Ronghua, et al. Relationship between the parameters of rapid prototying welding and welding seam sizes[J]. Welding Technology, 2008(4): 10 − 13. doi: 10.3969/j.issn.1002-025X.2008.04.004

    [18]

    Xiao Xinyuan, Shi Yonghua, Wang Guorong, et al. Study of image processing for V-shape groove and robotic weld seam tracking based on laser vision[J]. China Welding, 2008, 17(4): 68 − 73.

图(12)  /  表(3)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  118
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-22
  • 网络出版日期:  2024-03-08

目录

/

返回文章
返回