高级检索

水下激光修复研究现状与发展趋势

薛龙, 毛雪松, 黄继强, 张瑞英, 王瑃

薛龙, 毛雪松, 黄继强, 张瑞英, 王瑃. 水下激光修复研究现状与发展趋势[J]. 焊接学报, 2024, 45(4): 120-128. DOI: 10.12073/j.hjxb.20230513001
引用本文: 薛龙, 毛雪松, 黄继强, 张瑞英, 王瑃. 水下激光修复研究现状与发展趋势[J]. 焊接学报, 2024, 45(4): 120-128. DOI: 10.12073/j.hjxb.20230513001
XUE Long, MAO Xuesong, HUANG Jiqiang, ZHANG Ruiying, WANG Chun. Research and development of underwater laser repair[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 120-128. DOI: 10.12073/j.hjxb.20230513001
Citation: XUE Long, MAO Xuesong, HUANG Jiqiang, ZHANG Ruiying, WANG Chun. Research and development of underwater laser repair[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 120-128. DOI: 10.12073/j.hjxb.20230513001

水下激光修复研究现状与发展趋势

基金项目: 国家重点研发计划项目(2022YFB4601800);北京市科技成果概念验证项目:水下激光增材局部干式修复系统(2.55).
详细信息
    作者简介:

    薛龙,教授,博士研究生导师;主要研究方向为水下焊接及特种机器人技术; Email: xuelong@bipt.edu.cn

  • 中图分类号: TG 456.5;TG 456.7

Research and development of underwater laser repair

  • 摘要:

    海洋装备的维修养护与事故抢修技术既是人类进行远洋探索与资源开发的重要保障,又是核电站、水利工程等重要基础设施在役运维的有力技术支撑,而水下激光修复正是这一领域中极具前景的解决方案之一. 激光修复技术作为陆地上常规环境中的优势技术,近年来也在水下环境中有了长足的发展,已在海洋油气资源的开采与运输、船舶应急维修、船坞港口装备、水利工程、核动力工程等领域得到了广泛的关注与研究. 为了进一步总结并分析水下激光修复技术所面对的问题与现有解决方案,从水下激光修复技术的研究现状入手,综述了水下湿法、高压干法和局部干法激光修复技术的工艺问题及其产生机理,并分析对比了多种对应主流解决方案的改善效果与研究进展,最后对水下激光修复技术的发展趋势进行了总结与展望.

    Abstract:

    The capability of marine engineering maintenance and emergency repair is not only crucial for ocean exploration but also a powerful support for infrastructure such as nuclear and hydraulic power industry. Among all the techniques in this field, underwater laser repair has been one of the most popular research directions which holds great promise. Laser repair as a commonly used technology in ordinary environment has been successfully translated to numerous marine engineering applications researched by different industries such as nuclear power, hydraulic power, petroleum extraction and transportation, and ship maintenance. To further investigate the underwater laser repair technique, a comprehensive review has been done to understand current challenges and corresponding solutions. The process problems and their mechanisms of laser repair have been investigated in different methodologies such as underwater wet, hyperbaric dry and local dry method, then the improvement and research progress of main problem's mainstream solutions are compared, followed by the discussion and suggestion of the future research directions.

  • C/C复合材料是一种碳纤维增强碳基体的复合材料,因具有密度小、比强度高、耐高温、耐热冲击、耐腐蚀和耐摩擦性好等优异性能,在火箭发动机喷嘴喉部、飞机刹车片等航空航天领域被广泛应用. 将C/C复合材料与其他常用材料连接具有广泛的应用前景[1-4]. 然而,C/C复合材料表面润湿性较差,这势必会影响到C/C复合材料与同种材料或者异种材料的连接,导致焊后接头性能较差[5],因此,如何使钎料在C/C复合材料表面较好的润湿一直是国内外学者研究的重点[6].

    Ag-Cu-Ti钎料熔点适中,具有良好的强度、韧性、导电性、导热性以及抗腐蚀性,被广泛应用于异种金属的连接[7]. Zhang 等人[8]通过化学沉积的方法探究了AgCuTi钎料在C/C复合材料上的润湿机制,结果表明,钎料中Ag可以促进C与Ti反应生成TiC.

    文中通过TIG电弧直接在C/C复合材料表面加热的方式探究Ag-Cu-Ti钎料在C/C复合材料上的润湿情况,并借助SEM,EDS等分析方法,研究保温时间对Ag-Cu-Ti钎料在C/C复合材料上的润湿铺展的影响及钎料软化行为.

    试验选用二维编制层叠C/C复合材料板,通过机械加工的方式截取成规格为65 mm × 40 mm × 3 mm的长方体用于后续的润湿试验. 所用钎料为Ag-Cu-Ti膏,其制备方法是根据文献资料设计的配比,如表1所示,即在Ag-Cu共晶点处加入原子分数为4.5%的活性元素Ti,制备Ag68.8Cu26.7Ti4.5合金钎料粉末,添加定量丙酮、乙二醇将其配置成膏状. 因丙酮有强烈的挥发性,导致膏状状态不能长时间保持,且铺展均匀性差. 因此,对配制方法做了改良:用制备的Ag68.8Cu26.7Ti4.5合金钎料粉末,在其中加入粘结剂使其呈膏状,粘结剂含量占总含量的8% ~ 15%. 粘结剂的牌号为Titd-YNJ01.

    表  1  钎料中各组分的用量
    Table  1.  Content of the solder
    粉末Ag-Cu-Ti L1/g丙酮 L2/mL乙二醇 L3/mL
    0.230.10.09
    下载: 导出CSV 
    | 显示表格

    焊接设备主要包括焊接机器人、奥太氩弧焊机、P-20A型智能温度控制仪表 (加热功率为1.6 kW,控温精度达 ± 0.8 ℃)和K型热电偶(测量0 ~ 1 300 ℃的液体蒸气和气体介质以及固体的表面温度). 此外,还需四组耐火棉、丙酮、砂纸、医用棉签等若干材料.

    焊前清理是保证焊接质量不可缺少的重要措施,在焊接前,对钨极、加热平台,先用砂纸打磨其表面,然后用丙酮进一步去除氧化膜. 对于C/C复合材料,先用砂纸打磨后,再放入超声波清洗机中清洗30 min,烘干后立即施焊,避免因与空气接触过久形成新的氧化膜,且避免用手直接触碰母材待焊部位.

    焊接装置示意图如图1所示,焊接前先将C/C复合材料放置于加热平台上,并将膏状Ag-Cu-Ti钎料涂在C/C复合材料表面,随后将加热平台加热至560 ℃,待温度恒定后在C/C复合材料板上引燃TIG电弧,保护气选用氩气,试验参数如表2所示. 随后通过焊接机器人将TIG电弧缓慢移动到Ag-Cu-Ti钎料正上方使其熔化铺展,待膏状钎料完全熔化铺展后熄灭电弧,且维持加热平台温度为560 ℃,利用耐火棉将工件包裹开始保温(保温时间:0,15,30,60,120 min),保温期间持续通保护气. 待保温过程结束后,将加热平台温度调至室温,使工件在加热平台上缓慢冷却至室温即可.

    图  1  焊接示意图
    Figure  1.  Welding diagram
    表  2  焊接工艺参数表
    Table  2.  Welding parameters
    焊接电流 I/A钨极距离 L/mm冷却速度 v/(℃·min−1)保护气流量 q/(L·min−1)预热温度 T1/℃保温温度T2/℃
    10043.520560560
    下载: 导出CSV 
    | 显示表格

    利用MERLIN Compact–场发射扫描电子显微镜观察界面微观组织及断口形貌,并用设备自带的能谱仪进行成分测试. 将制取好的每个试样沿如图2所示通过硬度计从最高点到反应界面的最短路径进行打点,打点间隔为0.03 mm,施加载荷为0.98 N,加载时间10 s.

    图  2  硬度测试位置示意图
    Figure  2.  Hardness test position diagram

    图3为不同保温时间下膏状Ag-Cu-Ti钎料在C/C复合材料表面润湿铺展宏观形貌. 从图3可知,在保温时间为0~60 min时,膏状Ag-Cu-Ti钎料在电弧力的作用下熔化并由中心向四周流动,逐渐铺展润湿,且润湿效果较好. 但表面出现不同程度的氧化,在未保温情况下,润湿钎料被氧化较为严重,当保温时间增加至60 min时,因保护气原因,工件表面被氧化程度减弱. 但当保温时间增加至120 min时,试样表面氧化最为严重,这可能是因为即使持续通保护气,但在加热平台加热下工件仍旧被外界空气氧化. 此外,在通过线切割处理该试样时,润湿后的Ag-Cu-Ti钎料从C/C复合板上脱落,其原因可能是由于界面脆性相的生成并在界面附近大量聚集,热膨胀系数与母材相差太大,导致界面应力集中加剧,无法保证牢固结合.

    图  3  不同保温时间下润湿宏观形貌
    Figure  3.  Wetting macrography at different holding times. (a) 0 min; (b) 15 min; (c) 30 min; (d) 60 min; (e) 120 min

    图4分别为保温时间0 ~ 60 min下钎料在C/C复合材料表面润湿角变化,从图中可知,不同保温时间下润湿角均为锐角,且润湿角随保温时间先增加后减小. 当保温时间为30 min,润湿角最大,当保温时间增加至60 min时,润湿角最小,说明保温时间达到一定时刻后可促进钎料在C/C复合材料表面的润湿.

    图  4  不同保温时间下试验润湿界面图
    Figure  4.  Experimental wetting interface diagram at different holding times. (a) 0 min;(b) 15 min;(c) 30 min;(d) 60 min

    图5为不同保温时间下接头微观形貌,并对图中P1,P2,P3,P4进行EDS分析,结果如表3所示. 对比不同保温时间下微观形貌,发现随着保温时间的增加,灰色区域面积增加. 除此之外,在高温下,发生C + Ti→TiC的反应. 此化合物是产生结合的必要产物,但作为一种脆性相,数量过多也会导致反应层边缘脆裂[9]. 在不保温情况下,界面处没有明显的反应层,几乎无TiC生成. 当保温时间增加到15,30和60 min时,界面处出现明显的反应层,且均匀铺展在C/C界面上,说明界面有生成TiC的可能性. 当保温时间从15 min增加至30 min时,反应层厚度由平均0.5 μm增加至平均1 μm. 当保温时间增加至60 min时,反应层非常致密且连续分布在C/C界面上,平均厚度为1.3 μm,反应层厚度出现不同程度的增加,界面分布较为均匀,反应效果最好. 结合王毅等人[10]的试验研究结果,从P4点扫描结果分析在钎料中伴随AgTi/CuTi3/Cu4Ti3等脆性化合物存在.

    表  3  图5点扫描成分结果(原子分数,%)
    Table  3.  Point scanning of Figure 5
    位置TiAgCuC可能的相
    P1 20.61 79.39 TiC
    P2 5.36 9.04 85.60 α′-Cu固溶体
    P3 65.51 34.49 α-Ag固溶体
    P4 49.01 8.80 42.19 AgTi/CuTi3/Cu4Ti3
    下载: 导出CSV 
    | 显示表格
    图  5  不同保温时间下微观组织
    Figure  5.  Microstructure at different holding times. (a) 0 min;(b) zoom-in image of the selected area A; (c)15 min;(d) zoom-in image of the selected area B;(e) 30 min;(f) zoom-in image of the selected area C;(g) 60 min; (h) zoom-in image of the selected area D

    图6为不同保温时间界面的线扫描结果,线扫描方向如图5中箭头所示. 由图可知,在不保温的情况下,元素扩散层厚度为4.5 μm,这可能是焊接过程和降温过程共同导致的. 在焊接过程和降温过程相同的情况下,当保温时间为15,30 和60 min时,元素扩散层分别为5.0,5.3和5.5 μm. 相对不保温情况下元素扩散层均有不同程度增加,但保温时间对元素扩散层的变化影响较小. 此外,四组线扫描数据中元素的变化趋势共同说明了Ti元素在界面附近发生富集. 因此,在聚集区TiC生成的同时伴随有Ti2Cu的产生[11].

    图  6  不同保温时间下线扫描结果
    Figure  6.  Line scanning results at different holding times. (a) 0 min;(b) 15 min;(c) 30 min;(d) 60 min

    图7为钎料在不同保温时间下硬度分布示意图. 可以看出,保温导致钎料出现不同程度软化,这可能是因为在保温时钎料发生晶粒再结晶,使其硬度降低[12]. 除此之外,不同保温时间下钎料硬度曲线出现不同程度波动,这是因为TiC作为一种脆性相并未得到均匀分布,元素也没有得到充分扩散,造成硬度分布不均匀.

    图  7  钎料在不同保温时间下的硬度分布图
    Figure  7.  Hardness distribution of filler metal at different holding times

    (1) 采用TIG电弧直接加热的方式在C/C复合材料表面润湿Ag-Cu-Ti钎料,分析焊后保温时间对润湿的影响. 当保温时间为60 min时,润湿效果最好,TiC反应层分布最均匀、致密,厚度约为1.3 μm;并且在保温时间下钎料发生软化致使钎料硬度降低.

    (2) 在向反应界面接近的过程中,有AgTi/CuTi3/Cu4Ti3等脆性化合物的生成.

    (3) 不同保温时间下,Ti元素均会发生不同程度扩散,当保温时间为60 min时,元素扩散层最大为5.5 μm,相对于不保温情况下仅增加了1 μm. 保温时间对元素扩散层的变化影响较小,且Ti元素在近界面处发生聚集,在聚集区伴随有Ti2Cu的产生.

  • 图  1   不同水深下的激光焊效果[11]

    Figure  1.   Laser welding under different water depth

    图  2   水下湿法焊接中的激光诱导等离子体[15]

    Figure  2.   Photoinduced plasma in underwater wet welding

    图  3   水深4 mm激光功率对成形效果的影响[19]

    Figure  3.   Influence of laser power on forming effect under 4 mm deep water layer

    图  4   不同压力的光致等离子体云瞬态膨胀行为[45]

    Figure  4.   Photoinduced plasma transient expansion behavior under different pressures

    图  5   水下强冷却环境中形成的Ti和Mn损耗区[53]

    Figure  5.   Ti and Mn-depletion zone caused by high cooling rate

    图  6   水下和常规环境的激光熔覆层对比[58]

    Figure  6.   Comparison of laser cladding in local dry and normal environments

  • [1] 董振华. 船舶维修保养技术经济性研究[D]. 大连: 大连海事大学, 2009.

    Dong Zhenhua. Research on ship maintenance technology and economy [D]. Dalian : Dalian Maritime University, 2009.

    [2] 赵永涛, 殷敏谦, 曾红军, 等. 海洋平台结构损伤检测研究[J]. 中国海洋平台, 2008, 23(5): 23 − 26. doi: 10.3969/j.issn.1001-4500.2008.05.005

    Zhao Yongtao, Yin Minqian, Zeng Hongjun, et al. Research on structural damage detection of offshore platforms[J]. China Offshore Platforms, 2008, 23(5): 23 − 26. doi: 10.3969/j.issn.1001-4500.2008.05.005

    [3] 王家淳. 激光焊接技术的发展与展望[J]. 激光技术, 2001(1): 48 − 54. doi: 10.3969/j.issn.1001-3806.2001.01.004

    Wang Jiachun. Development and prospect of laser welding technology[J]. Laser Technology, 2001(1): 48 − 54. doi: 10.3969/j.issn.1001-3806.2001.01.004

    [4]

    Sun G F, Wang Z D, Lu Y, et al. Investigation on microstructure and mechanical properties of NV E690 steel joint by laser-MIG hybrid welding[J]. Materials & Design, 2017, 127: 297 − 310.

    [5]

    Hino T, Tamura M, Tanaka Y, et al. Development of underwater laser cladding and underwater laser seal welding techniques for reactor components[J]. Journal of Power and Energy Systems, 2009, 3(1): 51 − 59. doi: 10.1299/jpes.3.51

    [6] 王伟, 王泽明, 魏连峰, 等. 水下激光加工技术在核电维修领域的应用现状及发展[J]. 电焊机, 2020, 50(7): 74 − 79. doi: 10.7512/j.issn.1001-2303.2020.07.11

    Wang Wei, Wang Zeming, Wei Lianfeng, et al. Application status and development of underwater laser processing technology in the field of nuclear power maintenance[J]. Electric Welding Machine, 2020, 50(7): 74 − 79. doi: 10.7512/j.issn.1001-2303.2020.07.11

    [7]

    Sun G, Wang Z, Lu Y, et al. Underwater laser welding/cladding for high-performance repair of marine metal materials: A review[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 1 − 19. doi: 10.1186/s10033-021-00666-0

    [8]

    Parshin S, Levchenko A. Underwater hyperbaric dry welding of high strength steel arctic oil and gas pipelines[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2020: 012159.

    [9]

    Shannon G J, Watson J, Deans W F. Investigation into the underwater laser welding of steel[J]. Journal of Laser Applications, 1994, 6(4): 223 − 229. doi: 10.2351/1.4745360

    [10]

    Shannon G J, McNaught W, Deans W F, et al. High power laser welding in hyperbaric gas and water environments[J]. Journal of Laser Applications, 1997, 9(3): 129 − 136. doi: 10.2351/1.4745452

    [11]

    Guo N, Xing X, Zhao H, et al. Effect of water depth on weld quality and welding process in underwater fiber laser welding[J]. Materials & Design, 2017, 115: 112 − 120.

    [12] 秦航, 蔡志海, 朱加雷, 等. TC4钛合金水下湿法激光焊接焊缝组织与性能[J]. 焊接学报, 2019, 40(12): 143 − 148.

    Qin Hang, Cai Zhihai, Zhu Jialei, et al. Microstructure and properties of welding seam of TC4 titanium alloy by underwater wet laser welding[J]. Transactions of the China Welding Institution, 2019, 40(12): 143 − 148.

    [13] 邢霄. 304不锈钢水下激光焊接排水装置设计及焊接工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    Xing Xiao. Design and welding technology of 304 stainless steel underwater laser welding drainage device [D]. Harbin: Harbin Institute of Technology, 2017.

    [14] 李明, 张宏超, 沈中华, 等. 激光导致水击穿和等离子体形成过程的物理分析[J]. 光子学报, 2005(11): 12 − 16.

    Li Ming, Zhang Hongchao, Shen Zhonghua, et al. Physical analysis of water breakdown and plasma formation induced by laser[J]. Acta Photonica Sinica, 2005(11): 12 − 16.

    [15]

    Zhang X, Chen W, Ashida E, et al. Relationship between weld quality and optical emissions in underwater Nd: YAG laser welding[J]. Optics and Lasers in Engineering, 2004, 41(5): 717 − 730. doi: 10.1016/S0143-8166(03)00031-9

    [16]

    Zhang X, Chen W, Ashida E, et al. Laser–material interaction and process sensing in underwater Nd: yttrium–aluminum–garnet laser welding[J]. Journal of Laser Applications, 2003, 15(4): 279 − 284. doi: 10.2351/1.1620002

    [17]

    Zhang X, Ashida E, Shono S, et al. Effect of shielding conditions of local dry cavity on weld quality in underwater Nd: YAG laser welding[J]. Journal of Materials Processing Technology, 2006, 174(1-3): 34 − 41. doi: 10.1016/j.jmatprotec.2004.12.009

    [18]

    Mullick S, Madhukar Y K, Roy S, et al. An investigation of energy loss mechanisms in water-jet assisted underwater laser cutting process using an analytical model[J]. International Journal of Machine Tools and Manufacture, 2015, 91: 62 − 75. doi: 10.1016/j.ijmachtools.2015.02.005

    [19] 秦航, 蔡志海, 张平, 等. 中碳钢水下湿法激光焊接焊缝成形行为与性能[J]. 中国表面工程, 2019, 32(3): 130 − 137. doi: 10.11933/j.issn.1007-9289.20190123002

    Qin Hang, Cai Zhihai, Zhang Ping, et al. Weld forming behavior and properties of medium carbon steel by underwater wet laser welding[J]. China Surface Engineering, 2019, 32(3): 130 − 137. doi: 10.11933/j.issn.1007-9289.20190123002

    [20]

    Sakate P M, Mullick S, Gopinath M. An investigation on physical phenomena of water-jet assisted underwater wet laser welding technique under continuous and pulsed mode operation[J]. Optik, 2021, 242: 167272. doi: 10.1016/j.ijleo.2021.167272

    [21]

    Wen X, Jin G, Cui X, et al. Underwater wet laser cladding on 316L stainless steel: A protective material assisted method[J]. Optics & Laser Technology, 2019, 111: 814 − 824.

    [22] 冯相如. 水环境下Cu基合金激光沉积层的成形机理及性能调控[D]. 哈尔滨: 哈尔滨工程大学, 2019.

    Feng Xiangru. Formation mechanism and property control of laser deposited Cu-based alloys in water environment [D]. Harbin: Harbin Engineering University, 2019.

    [23] 吴广成, 张晓晖, 饶炯辉. 水下激光光束空间分布特性的实验研究[J]. 激光与红外, 2009, 39(2): 133 − 136. doi: 10.3969/j.issn.1001-5078.2009.02.004

    Wu Guangcheng, Zhang Xiaohui, Rao Jionghui. Experimental study on spatial distribution characteristics of underwater laser beam[J]. Laser and Infrared, 2009, 39(2): 133 − 136. doi: 10.3969/j.issn.1001-5078.2009.02.004

    [24] 李娜, 汤少华, 陆梦洁, 等. 激光波长对水体中激光诱导击穿光谱和空化气泡演化的影响[J]. 光学学报, 2002, 42(18): 41 − 48.

    Li Na, Tang Shaohua, Lu Mengjie, et al. Effect of laser wavelength on laser-induced breakdown spectra and cavitation bubble evolution in water[J]. Acta Optica Sinica, 2002, 42(18): 41 − 48.

    [25]

    Long J, Eliceiri M H, Ouyang Y, et al. Effects of immersion depth on the dynamics of cavitation bubbles generated during ns laser ablation of submerged targets[J]. Optics and Lasers in Engineering, 2021, 137: 106334. doi: 10.1016/j.optlaseng.2020.106334

    [26] 鲍家定. 水层特性对水下激光划切单晶硅质量的影响研究[D]. 桂林: 桂林电子科技大学, 2021.

    Bao Jiading. Study on the effect of water layer characteristics on the quality of underwater laser cutting monocrystalline silicon [D]. Guilin : Guilin University of Electronic Science and Technology, 2021.

    [27] 谢明. 激光诱导空化微成形实验研究[D]. 广州: 广东工业大学, 2021.

    Xie Ming. Experimental study on laser induced cavitation micro-forming [D]. Guangzhou: Guangdong University of Technology, 2021.

    [28]

    Zhao R, Liang Z, Xu R, et al. Dynamics of laser-induced cavitation bubble near solid boundary[J]. Japanese Journal of Applied Physics, 2008, 47(7R): 5482. doi: 10.1143/JJAP.47.5482

    [29]

    Chen X, Xu R Q, Shen Z H, et al. Optical investigation of cavitation erosion by laser-induced bubble collapse[J]. Optics & Laser Technology, 2004, 36(3): 197 − 203.

    [30] 强豪. 水环境激光空泡与金属靶材相互作用过程及机理研究[D]. 南京: 南京理工大学, 2018.

    Qiang Hao. Study on the interaction process and mechanism between laser void and metal target in water environment [D]. Nanjing : Nanjing University of Science and Technology, 2018.

    [31] 蔡志海, 尤家玉, 秦航, 等. 铝青铜水下湿法激光焊接焊缝成形与力学性能[J]. 装甲兵工程学院学报, 2019, 33(1): 104 − 109.

    Cai Zhihai, You Jiayu, Qin Hang, et al. Weld forming and mechanical properties of aluminum bronze by underwater wet laser welding[J]. Journal of Armored Forces, 2019, 33(1): 104 − 109.

    [32]

    Kumar V, Hussain M, Raza M S, et al. Fiber laser welding of thin nickel sheets in air and water medium[J]. Arabian Journal for Science and Engineering, 2017, 42: 1765 − 1773. doi: 10.1007/s13369-016-2305-1

    [33]

    Feng X, Cui X, Zheng W, et al. Effect of the protective materials and water on the repairing quality of nickel aluminum bronze during underwater wet laser repairing[J]. Optics & Laser Technology, 2019, 114: 140 − 145.

    [34] 肖镌璐. 高压干法水下激光熔覆表面修复工艺研究[D]. 北京: 北京化工大学, 2020.

    Xiao Juanlu. Research on surface repair technology of high pressure dry underwater laser cladding [D]. Beijing : Beijing University of Chemical Technology, 2020.

    [35] 邵长磊, 肖镌璐, 朱加雷, 等. 激光填丝熔覆表面修复工艺研究及压力环境验证[J]. 北京石油化工学院学报, 2021, 29(4): 14 − 18.

    Shao Changlei, Xiao Juanlu, Zhu Jialei, et al. Study on surface repair technology of laser wire cladding and verification of pressure environment[J]. Journal of Beijing Institute of Petrochemical Technology, 2021, 29(4): 14 − 18.

    [36]

    Pang S, Hirano K, Fabbro R, et al. Explanation of penetration depth variation during laser welding under variable ambient pressure[J]. Journal of Laser Applications, 2015, 27(2): 022007. doi: 10.2351/1.4913455

    [37]

    Luo M, Hu R, Li Q, et al. Physical understanding of keyhole and weld pool dynamics in laser welding under different water pressures[J]. International Journal of Heat and Mass Transfer, 2019, 137: 328 − 336. doi: 10.1016/j.ijheatmasstransfer.2019.03.129

    [38]

    Su J, Zhang Z, Xiao M, et al. Effects of ambient pressure on single-pulse laser processing of austenite stainless steel[J]. Journal of Materials Processing Technology, 2019, 263: 59 − 72. doi: 10.1016/j.jmatprotec.2018.07.015

    [39]

    Wang K, Shao C, Jiao X, et al. Investigation on microstructure and properties of duplex stainless steel welds by underwater laser welding with different shielding gas[J]. Materials, 2021, 14(17): 4774. doi: 10.3390/ma14174774

    [40]

    Wang K, Jiao X, Zhu J, et al. Effect of nitrogen protection on weld metal microstructure and intergranular behavior of S32101 duplex stainless steel 15 m water depth hyperbaric laser underwater welding[J]. Advances in Mechanical Engineering, 2022, 14(1): 1 − 12.

    [41]

    Luo Y, Tang X, Lu F, et al. Effect of subatmospheric pressure on plasma plume in fiber laser welding[J]. Journal of Materials Processing Technology, 2015, 215: 219 − 224. doi: 10.1016/j.jmatprotec.2014.08.011

    [42] 史俊锋. CO2激光深熔焊接光致等离子体行为的数值模拟[D]. 北京: 北京工业大学, 2001.

    Shi Junfeng. Numerical simulation of photoplasma behavior in CO2 laser deep penetration welding [D]. Beijing : Beijing University of Technology, 2001.

    [43] 王永贵. 侧吹气体对光致等离子体结构和屏蔽效应的影响[D]. 上海: 上海交通大学, 2014.

    Wang Yonggui. Influence of side-blown gas on the structure and shielding effect of photoplasma [D]. Shanghai : Shanghai Jiao Tong University, 2014.

    [44]

    Kawahito Y, Kinoshita K, Matsumoto N, et al. Effect of weakly ionised plasma on penetration of stainless steel weld produced with ultra high power density fibre laser[J]. Science and Technology of Welding and Joining, 2008, 13(8): 749 − 753. doi: 10.1179/136217108X356971

    [45]

    Long J, Zhang L J, Ning J, et al. Dynamic behavior of plasma and molten pool of pure titanium during hyperbaric laser welding[J]. Infrared Physics & Technology, 2021, 115: 103686.

    [46]

    Long J, Zhang L J, Zhang L L, et al. Towards better understanding of hyperbaric fiber laser spot welding of metallic material[J]. Journal of Manufacturing Processes, 2020, 56: 372 − 381. doi: 10.1016/j.jmapro.2020.04.087

    [47] 孙大为. 高功率激光焊接等离子体三维重建及能量传输研究[D]. 上海: 上海交通大学, 2015.

    Sun Dawei. 3D reconstruction and energy transfer of high power laser welding plasma [D]. Shanghai : Shanghai Jiao Tong University, 2015.

    [48]

    Qiu W, Yang L, Zhao S, et al. A study on plasma plume fluctuation characteristic during A304 stainless steel laser welding[J]. Journal of Manufacturing Processes, 2018, 33: 1 − 9.

    [49]

    Chida I, Mukai N, Kono W, et al. Development of multifunction laser welding head as maintenance technologies against stress corrosion cracking for nuclear power reactors[C]//International Conference on Nuclear Engineering, 2009: 319 − 325.

    [50]

    Hamada Y, Nagasawa K, Oowaki K, et al. Development of high reliable welding method with underwater laser welding technology for stainless steel made structures installed in underwater[C]//Japan Society of Maintenology. Annual Meeting of Japan Society of Maintenology, Tokyo, 2019: 24 − 26.

    [51] 姚杞. 不锈钢水下激光焊接研究[D]. 天津: 天津大学, 2014.

    Yao Qi. Research on underwater laser welding of stainless steel [D]. Tianjin : Tianjin University, 2014.

    [52] 李丛伟, 邵长磊, 朱加雷, 等. 304不锈钢局部干法水下激光填丝熔覆层微观组织及性能[J]. 焊接学报, 2019, 42(8): 67 − 74.

    Li Congwei, Shao Changlei, Zhu Jialei, et al. Microstructure and properties of 304 stainless steel localized dry process underwater laser wire cladding[J]. Transactions of the China Welding Institution, 2019, 42(8): 67 − 74.

    [53]

    Di X, Ji S, Cheng F, et al. Effect of cooling rate on microstructure, inclusions and mechanical properties of weld metal in simulated local dry underwater welding[J]. Materials & Design, 2015, 88: 505 − 513.

    [54] 黄尊月. 水介质下激光焊接机理及关键技术研究[D]. 天津: 天津大学, 2018.

    Huang Zunyue. Research on mechanism and key technology of laser welding in water medium [D]. Tianjin : Tianjin University, 2018.

    [55] 谷占飞. 活性剂辅助激光焊接组织性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2015.

    Gu Zhanfei. Study on microstructure and properties of activator-assisted laser welding [D]. Harbin: Harbin University of Science and Technology, 2015.

    [56]

    Huang Z Y, Luo Z, Ao S, et al. Underwater laser weld bowing distortion behavior and mechanism of thin 304 stainless steel plates[J]. Optics & Laser Technology, 2018, 106: 123 − 135.

    [57]

    Guo N, Wu D, Wang G, et al. Investigation on underwater wire-feed laser deposition of 5052 aluminum alloy[J]. Journal of Manufacturing Processes, 2022, 76: 687 − 694. doi: 10.1016/j.jmapro.2022.02.050

    [58]

    Fu Y, Guo N, Cheng Q, et al. In-situ formation of laser-cladded layer on Ti-6Al-4 V titanium alloy in underwater environment[J]. Optics and Lasers in Engineering, 2020, 131: 106104. doi: 10.1016/j.optlaseng.2020.106104

    [59]

    Guo N, Wu D, Yu M, et al. Microstructure and properties of Ti-6Al-4V titanium alloy prepared by underwater wire feeding laser deposition[J]. Journal of Manufacturing Processes, 2022, 73: 269 − 278. doi: 10.1016/j.jmapro.2021.11.002

    [60]

    Liu Y, Li C, Huang X F, et al. Investigation on solidification structure and temperature field with novel processing of synchronous powder-feeding underwater laser cladding[J]. Journal of Materials Processing Technology, 2021, 296: 117166. doi: 10.1016/j.jmatprotec.2021.117166

    [61]

    Liu C, Guo N, Cheng Q, et al. In situ formation of laser-cladded layer on thin-walled tube of aluminum alloy in underwater environment[J]. Materials, 2021, 14(16): 4729. doi: 10.3390/ma14164729

    [62] 郭宁, 王美荣, 郭伟, 等. 水下湿法自保护药芯焊丝[J]. 焊接学报, 2014, 35(5): 13 − 16.

    Guo Ning, Wang Meirong, Guo Wei, et al. Underwater wet self-protected flux-cored wire[J]. Transactions of the China Welding Institution, 2014, 35(5): 13 − 16.

    [63]

    Han Yongquan, Han Jiao, Chen Yan, et al. Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy[J]. China Welding, 2021, 30(3): 7 − 11.

    [64] 江东远. 6061铝合金超声波辅助激光焊接工艺研究[D]. 长沙: 湖南大学, 2020.

    Jiang Dongyuan. Study on ultrasound-assisted laser welding of 6061 aluminum alloy [D]. Changsha: Hunan University, 2020.

    [65] 张小凡, 张建勋, 王浩, 等. 稳态磁场辅助激光焊技术研究现状与展望[J]. 热加工工艺, 2022, 51(13): 1 − 8.

    Zhang Xiaofan, Zhang Jianxun, Wang Hao, et al. Research status and prospect of steady state magnetic field assisted laser welding technology[J]. Hot Working Technology, 2022, 51(13): 1 − 8.

  • 期刊类型引用(0)

    其他类型引用(1)

图(6)
计量
  • 文章访问数:  236
  • HTML全文浏览量:  22
  • PDF下载量:  69
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-05-12
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-04-24

目录

/

返回文章
返回