高级检索

水下激光修复研究现状与发展趋势

薛龙, 毛雪松, 黄继强, 张瑞英, 王瑃

薛龙, 毛雪松, 黄继强, 张瑞英, 王瑃. 水下激光修复研究现状与发展趋势[J]. 焊接学报, 2024, 45(4): 120-128. DOI: 10.12073/j.hjxb.20230513001
引用本文: 薛龙, 毛雪松, 黄继强, 张瑞英, 王瑃. 水下激光修复研究现状与发展趋势[J]. 焊接学报, 2024, 45(4): 120-128. DOI: 10.12073/j.hjxb.20230513001
XUE Long, MAO Xuesong, HUANG Jiqiang, ZHANG Ruiying, WANG Chun. Research and development of underwater laser repair[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 120-128. DOI: 10.12073/j.hjxb.20230513001
Citation: XUE Long, MAO Xuesong, HUANG Jiqiang, ZHANG Ruiying, WANG Chun. Research and development of underwater laser repair[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 120-128. DOI: 10.12073/j.hjxb.20230513001

水下激光修复研究现状与发展趋势

基金项目: 国家重点研发计划项目(2022YFB4601800);北京市科技成果概念验证项目:水下激光增材局部干式修复系统(2.55).
详细信息
    作者简介:

    薛龙,教授,博士研究生导师;主要研究方向为水下焊接及特种机器人技术; Email: xuelong@bipt.edu.cn

  • 中图分类号: TG 456.5;TG 456.7

Research and development of underwater laser repair

  • 摘要:

    海洋装备的维修养护与事故抢修技术既是人类进行远洋探索与资源开发的重要保障,又是核电站、水利工程等重要基础设施在役运维的有力技术支撑,而水下激光修复正是这一领域中极具前景的解决方案之一. 激光修复技术作为陆地上常规环境中的优势技术,近年来也在水下环境中有了长足的发展,已在海洋油气资源的开采与运输、船舶应急维修、船坞港口装备、水利工程、核动力工程等领域得到了广泛的关注与研究. 为了进一步总结并分析水下激光修复技术所面对的问题与现有解决方案,从水下激光修复技术的研究现状入手,综述了水下湿法、高压干法和局部干法激光修复技术的工艺问题及其产生机理,并分析对比了多种对应主流解决方案的改善效果与研究进展,最后对水下激光修复技术的发展趋势进行了总结与展望.

    Abstract:

    The capability of marine engineering maintenance and emergency repair is not only crucial for ocean exploration but also a powerful support for infrastructure such as nuclear and hydraulic power industry. Among all the techniques in this field, underwater laser repair has been one of the most popular research directions which holds great promise. Laser repair as a commonly used technology in ordinary environment has been successfully translated to numerous marine engineering applications researched by different industries such as nuclear power, hydraulic power, petroleum extraction and transportation, and ship maintenance. To further investigate the underwater laser repair technique, a comprehensive review has been done to understand current challenges and corresponding solutions. The process problems and their mechanisms of laser repair have been investigated in different methodologies such as underwater wet, hyperbaric dry and local dry method, then the improvement and research progress of main problem's mainstream solutions are compared, followed by the discussion and suggestion of the future research directions.

  • 航空发动机上各种功能用途的安装座大多通过焊接与机匣壳体相连接,在实际工作当中,机匣壳体会承受多种载荷的周期性作用,从而导致这些安装座的环形焊缝很容易成为多轴疲劳破坏的薄弱部位,因此,精确评估机匣安装座环形焊缝在复杂载荷下的多轴疲劳寿命,对于提高发动机结构强度和可靠性有非常重要的意义.

    常用的焊接接头疲劳寿命预测方法主要包括:名义应力法、局部应力应变法[1]、热点应力法[2]、场强法[3]、断裂力学法[4]等,这些方法运用简单且实用,但是不能表征焊接接头多轴疲劳的损伤机理,随着Brown等人[5]提出临界面法后,多轴疲劳寿命研究的主要方法开始逐步转变成临界面法,相较于传统的疲劳寿命预测方法,临界面法更能解释焊接接头的多轴疲劳损伤机理,也更具有现实的物理意义.

    根据工程实际的需要,目前较为广泛的是针对焊接接头拉-扭多轴疲劳寿命的研究,王霄翔[6]、顾明恒[7]、刘亮[8]分别进行了3种材料的真空电子束焊接头薄壁圆管件的拉-扭多轴疲劳试验,通过临界面法研究了焊接接头的多轴疲劳寿命,而针对弯-扭多轴疲劳试验研究焊接接头多轴疲劳寿命,则主要以角接接头为主;赵一阳[9]、邬婷[10]提出一种多轴疲劳寿命预测方法,分别选用十字和T形焊接接头、法兰管焊接结构作为研究对象,通过有限元数值模拟方法计算弯-扭组合加载下的疲劳寿命,通过与单轴试验的数据结果进行对照,证明该预测方法的有效性;刘健[11]选取4种焊接接头试件进行弯-扭多轴疲劳试验,采用缺口应力法和多轴疲劳准则预测不同焊接接头试件的多轴疲劳寿命,而关于采用双轴拉伸疲劳试验研究焊接结构的多轴疲劳,主要以研究疲劳裂纹扩展规律为主;Abecassis等人[12]通过异种金属焊接接头以及这两种材料焊接接头的十字形双轴拉伸试件的等双轴拉伸疲劳载荷下的疲劳试验,研究了I + II型裂纹组合对疲劳裂纹行为的影响规律;Koji等人[13]通过不同相位条件下的双轴拉伸疲劳试验,研究了角接接头的双轴载荷下疲劳裂纹扩展行为;Shanyavskiy[14]提出使用十字形双轴拉伸焊接试件来模拟薄壁压力容器筒体焊缝应力状态,利用J积分、应变能原理研究了焊接件在双轴拉伸疲劳载荷下的疲劳裂纹扩展规律.

    国内外对焊接接头多轴疲劳研究已开展了一些工作,但大都采用拉-扭和弯-扭加载的形式,对于类似于机匣安装座环形焊缝在双轴拉伸载荷下的疲劳寿命研究,还鲜有报道. 论文将以GH4169环形电子束焊接结构为研究对象,对其双轴拉伸载荷下的疲劳寿命预测方法开展研究,提出一个行之有效的疲劳寿命预测模型研究方法.

    针对航空发动机大型零部件疲劳寿命的分析,由于实际工作时的应力状态较为复杂,仅采用标准件进行疲劳试验无法得到精确可靠的疲劳寿命评估结果[15],而如果直接采用零部件进行试验,则会产生制造成本较高、加工周期长、试验工装难以控制等问题. 近年来,国内外研究者通常设计出带结构特征的模拟件,对大型零部件某些重点关注的危险部位的疲劳寿命进行考核[16-17],由于模拟件能够很好反映构件的疲劳损伤特征,从而对零组件的疲劳寿命预测结果有较高的可信度. 对于机匣安装座环形焊缝的疲劳性能研究而言,以往大都是以单轴拉伸疲劳试验为主[18],但是单轴疲劳试验并不能真实地反映安装座环形焊缝处的疲劳损伤特征. 根据课题组之前的研究成果[19],以传统的十字形双轴试件为基础,针对圆柱形机匣安装座进行改进,设计出带有机匣安装座环形焊缝结构特征的疲劳试验件,如图1所示, 试验件轮廓尺寸为144 mm × 144 mm × 3.5 mm,中心试验区的直径为39.5 mm,厚度为1.2 mm,安装座附近环形阴影部位为焊缝区,焊缝直径为29 mm,包含焊缝、熔合区和热影响区的径向宽度为3 mm. 两相邻夹持臂之间圆弧过渡段半径为20 mm,中心试验区正反面减薄过渡倒角半径R为6 mm,安装座结构根部的倒角半径为10.5 mm,通孔直径为3 mm,夹持臂楔形角度为50°,减薄区最外圆的直径为39.5 mm.

    图  1  双轴拉伸试验件(mm)
    Figure  1.  Geometry of cruciform specimen

    GH4169高温合金因其在650 ℃下有极高的屈服强度,且在焊接加工之后焊接接头有良好的塑性性能,广泛被运用在航空发动机的高温部件中,此外,GH4169高温合金也有较高的耐腐蚀、抗氧化和耐辐射性能,使得GH4169制造的构件能够在复杂的工况条件下,也有着优异的可靠性以及较高的结构强度,文中采用GH4169加工试验件,实物图如图2所示.

    图  2  双轴拉伸试验件实物图
    Figure  2.  Physical image of cruciform specimen. (a) front; (b) opposite

    试验在西安交通大学的机械结构强度与振动国家重点实验室完成,采用的设备为MTS Biaxial平面双轴试验系统,该试验系统能实现双轴及多轴的拉压、扭转、高低温等复杂加载组合试验,试验机共4个夹头,水平x方向2个作动器,竖直y方向2个作动器,并配有温度环境箱,如图3所示.

    图  3  MTS Biaxial平面双轴试验系统
    Figure  3.  MTS Biaxial Test Frame

    双轴拉伸疲劳试验的试验温度为室温,采用应力控制,并且x轴与y轴的作动器施加等比例循环载荷,试验的载荷波形为正弦波,载荷比R = 0.1,由于疲劳寿命主要处于高周范围,因此试验频率的选择尽量考虑较高试验频率,加载频率15 Hz.

    试验根据GH4169焊接接头力学性能参数设定了5个等轴加载(双轴比γ = 1)的载荷水平:(40 kN/40 kN),(33.3 kN/33.3 kN),(26.7 kN/26.7 kN),(21.3 kN/21.3 kN),(16.7 kN/16.7 kN),此外,还设定了两种非等轴的加载方式:(γ = 0.8,26.7 kN/21.4 kN),(γ = 0.6,26.7 kN/16 kN),所有施加的具体载荷大小均根据实际加工误差进行修正.

    根据试验结果可知,试件的疲劳寿命主要在104周次 ~ 106周次, 由于试验为双轴拉伸疲劳试验,在拟合S-N曲线的时候可以采用Von Mises等效应力作为疲劳损伤参量,将多轴的疲劳损伤等效成单轴的疲劳损伤,因此,论文将结合等效应力准则与Basquin方程,建立S-N曲线.

    $$ {\text{lg}}\sigma {\text{ = }}a + b\lg {N_{\rm{f}}} $$ (1)

    式中:Nf为疲劳寿命;σ为应力值;ab为拟合参数,根据不同载荷水平下对应的焊缝处最高等效应力值以及试验结果的有效数据,采用最小二乘法在双对数坐标系下对数据进行线性回归拟合,得到双轴拉伸疲劳S-N曲线,如图4所示.

    图  4  双轴拉伸试验件S-N曲线
    Figure  4.  S-N Curve of cruciform specimen

    根据拟合出来的结果,得到S-N曲线方程,即

    $$ {\text{lg}}\sigma {\text{ = }}3.752\;3 - 0.209\;98\lg {N_{\rm{f}}} $$ (2)

    图5为采用等效应力作为疲劳损伤参量试件疲劳寿命的结果,可以看到双轴比γ = 0.8的预测结果在3倍分散带以内,其余两种双轴比均存在部分数据点在3倍分散带以外的情况,因此等效应力作为疲劳损伤参量预测双轴拉伸疲劳寿命并不理想.

    图  5  等效应力准则下疲劳寿命预测结果
    Figure  5.  Fatigue life prediction with equivalent stress

    试验结果显示从焊缝处断裂的试验件,其疲劳断裂过程均位于焊缝上拉伸轴的某点处开始裂纹萌生,沿着环形焊缝向两侧开始扩展,直至最终失稳断裂. 图6为典型试件的疲劳断裂过程.

    图  6  等轴加载试验件断裂过程示意图
    Figure  6.  Fracture process of specimen under equiaxial loading. (a) N = 601 220; (b) N = 630 520; (c) N = 635 874; (d) N = 643 599

    载荷循环为601 220周次时,正y轴12点钟方向焊缝上出现了一处裂纹萌生的地方,图5(a)中的A点,随着循环载荷的继续作用,该处裂纹源沿着焊缝向两侧扩展;载荷循环为630 520周次时,裂纹逐渐扩大并开始向两端圆弧过渡段扩展;载荷循环为635 874周次时,裂纹已经趋于断裂并形成一条横向的大裂纹,最后载荷循环为643 599周次时完全断裂.

    其他有效试验件的裂纹萌生、扩展过程均与此相似,所不同的是萌生点位会在12点,3点,6点,9点钟方向随机出现,最终均表现为垂直某一拉伸轴的横向断裂. 图7是试验件非等轴加载下的断口对接示意图,观察裂纹位置可以发现,裂纹均处于x轴上,这是由于x轴施加的载荷高于y轴,造成x轴上焊缝的应力水平高于y轴. 通过观察所有试验件断口的对接情况可以发现,焊缝处裂纹两侧断口对接的缝隙较大,而圆弧过渡段的断口齐平且吻合程度较好,说明焊缝处是裂纹的扩展区而圆弧过渡段处为裂纹的瞬断区.

    图  7  非等轴加载试验件断口对接示意图
    Figure  7.  Fracture docking of specimen under unequiaxial loading. (a) γ=0.8;(b) γ=0.6

    试验件疲劳断口主要分为疲劳源区、扩展区和瞬断区,图8为模拟件典型宏观断口的形貌,观察可知,点A处的断口表面相对平整光滑,可以判断该处为裂纹源,点B处的断口有凹凸不平的疲劳弧线,可以判断为扩展区,点C处的断口表面发白且粗糙,可以判断为瞬断区.

    图  8  试验件宏观断口形貌
    Figure  8.  Macroscopic fracture morphology of specimen

    Findley[20]在分析了多数疲劳试验数据后,提出了一种疲劳损伤准则,认为剪应力是引起疲劳破坏的主要因素,因此,将剪应力幅值τa和法向正应力值σn的线性组合作为疲劳的损伤参量,通过计算不同平面下该损伤参量的数值,并从中筛选出最大损伤平面,即确定了临界平面,Findley准则的多轴疲劳寿命预测模型公式为

    $$ \max {\left( {{\tau _{\rm{a}}} + k{\sigma _{\rm{n}}}} \right)_{\theta ,\phi }} = f\left( {{N_{\rm{f}}}} \right) $$ (3)

    式中:等式右边为疲劳寿命Nf为变量的函数;θϕ为确定临界平面的旋转角度;k表示临界平面上正应力对疲劳损伤的所占权重的材料参数,根据该材料的试验数据,将参数k的值设为1.

    根据Findley准则定义的临界平面确定方法,需要先计算试验件焊缝的最危险节点不同平面下的剪应力幅值τa和法向正应力σn之和,再将这些数据点整合到同一个坐标系下,如图9所示,最后寻找数值最大的数据点所对应的平面.

    图  9  Findley准则确定临界平面
    Figure  9.  Searching critical plane by Findley criteria

    图9中可以看到,Findley准则下存在两个最大损伤平面,分别为原坐标系θ旋转22°且ϕ旋转180°的平面,以及θ旋转157°且ϕ旋转0°的平面,任意选取一个损伤平面作为临界平面,再提取该临界平面下的剪应力幅值τa和法向正应力σn,计算Findley准则的疲劳损伤参量,与等效应力作为疲劳损伤参量预测疲劳寿命相同,结合Basquin公式得到疲劳寿命预测方程,即

    $$ \lg \left( {{N_{\rm{f}}}} \right){\text{ = }}18.359\;4 - 4.753\;1\lg \left[ {{\text{max}}{{\left( {{\tau _{\rm{a}}} + {\sigma _{\rm{n}}}} \right)}_{\theta ,\phi }}} \right] $$ (4)

    该模型预测疲劳的结果如图10所示,与等效应力准则相似,预测结果并不理想,双轴比γ = 0.6的部分数据结果在3倍分散带以外.

    图  10  Findley准则下疲劳寿命预测结果
    Figure  10.  Fatigue life prediction with Findley criteria

    与Findley准则不同的是,Matake[21]认为剪应力幅值最大值的平面是多轴疲劳的最大损伤平面,因此,将Findley准则中的临界平面定义为剪应力幅值最大的平面,并将该平面上的剪应力幅值τa和法向正应力σn的线性组合定义为疲劳损伤参量为

    $$ \max {\left( {{\tau _{\rm{a}}}} \right)_{\theta ,\phi }} + k{\sigma _{\rm{n}}} = f\left( {{N_{\rm{f}}}} \right) $$ (5)

    式中:所有参数的含义与Findley准则均相同,且经验参数k的取值仍然取1, Matake准则需要计算试验件焊缝的最危险节点各个平面的剪应力幅值,然后把所有平面的剪应力幅值整合到同一个坐标系下,如图11所示,最后寻找数值最大的数据点所对应的平面确定临界平面

    图  11  Matake准则确定临界平面
    Figure  11.  Searching critical plane by Matake criteria

    图11中可以看到,Matake准则下同样存在两个最大损伤平面,分别为原坐标系θ旋转45°且ϕ旋转180°的平面,以及θ旋转135°且ϕ旋转0°的平面,任意选取一个损伤平面作为临界平面,提取该临界平面下的剪应力幅τa和法向正应力σn计算Matake疲劳损伤参量,得到疲劳寿命预测模型为

    $$ \lg \left( {{N_{\rm{f}}}} \right) = 18.132\;7 - 4.756\;1\lg \left[ {\max {{\left( {{\tau _{\rm{a}}}} \right)}_{\theta ,\phi }} + {\sigma _{\rm{n}}}} \right] $$ (6)

    通过该模型预测试验件的疲劳寿命,如图12所示,可以看到,预测结果与Findley准则相差并不明显,而双轴比γ = 0.6的寿命预测略有提高,这说明剪应力幅值的确对试验件的其他双轴比的疲劳寿命产生了一定影响,但整体的预测结果仍然不够理想,因此,使用Matake准则下的疲劳寿命预测模型同样无法很好地对所有情况进行寿命预测.

    图  12  Matake准则下疲劳寿命预测结果
    Figure  12.  Fatigue life prediction with Matake criteria

    从上述两种临界平面法准则的疲劳寿命预测结果对比可以看出,剪应力幅值对于焊缝多轴疲劳寿命是有一定影响的,造成分散性的主要原因在于双轴比γ的变化,因此基于Matake疲劳寿命预测模型进行修正,以适合不同双轴比下试验件焊缝的疲劳寿命预测. Matake准则中k根据经验选取1,但是该值并不能反映不同双轴比对焊缝多轴疲劳寿命的影响,而将双轴比γ作为修正参量引入k中是比较合理的. 此外,从上述的分析结果可以看到,不同双轴比下的剪应力对于试验件焊缝的疲劳寿命的影响是更明显的,为了减少正应力对于寿命预测结果的干扰,引入剪应力与正应力的比值$ \lambda $来修正疲劳损伤参量. 根据试验件3种双轴比的寿命预测结果可以看出,双轴比γ为0.8的预测结果是较好,因此以γ = 0.8为基础对k进行修正,综上所述,修正后的Matake准则为

    $$ {\sigma _{{\rm{em}}}} = \max {\left( {{\tau _{\rm{a}}}} \right)_{\theta ,\phi }} + \Delta k \cdot {\sigma _{\rm{n}}} = f\left( {{N_{\rm{f}}}} \right) $$ (7)

    式中:$ {\sigma _{{\rm{em}}}} $为修正的Matake准则疲劳损伤参量,$ \Delta k $为修正后的k值,即

    $$ \Delta k = 1 + \lambda \frac{{\left( {\gamma - 0.8} \right)}}{{0.8}} $$ (8)

    式中:$ \lambda $为临界平面上剪应力幅值与正应力比值,即

    $$ \lambda {\text{ = }}\frac{{{\tau _{\rm{a}}}}}{{{\sigma _{\rm{n}}}}} $$ (9)

    由于是基于Matake准则进行修正的,因此所选取的临界平面与Matake准则相同. 提取临界平面上的剪应力幅值和正应力,计算修正后的疲劳损伤参量$ {\sigma _{{\rm{em}}}} $,得到修正后的Matake疲劳寿命预测模型,即

    $$ \begin{split} \lg \left( {{N_{\rm{f}}}} \right) = 18.239\;2 - 4.767\;8\lg \left\{ {\max {{\left( {{\tau _{\rm{a}}}} \right)}_{\theta ,\phi }} + \left[ {1 + \left( {\frac{{{\tau _{\rm{a}}}}}{{{\sigma _{\rm{n}}}}}} \right) \cdot \frac{{\left( {\gamma - 0.8} \right)}}{{0.8}}} \right] \cdot {\sigma _{\rm{n}}}} \right\} \end{split} $$ (10)

    为验证修正后的Matake准则提出的疲劳损伤参量能够解释双轴比对双轴拉伸疲劳寿命的影响,同样给出了3种双轴比加载下1/4焊缝路径的$ {\sigma _{{\rm{em}}}} $变化,如图13所示.

    图  13  焊缝路径等效应力σem对比
    Figure  13.  Comparison of equivalent stress σem on the weld

    从图中焊缝最危险点A的$ {\sigma _{{\rm{em}}}} $变化可以看到,双轴比γ为1时,最大的$ {\sigma _{{\rm{em}}}} $与另外两种双轴比γ较为接近,符合实际试验中寿命的变化规律,证明了修正后的Matake准则能够解释双轴比对于双轴拉伸疲劳寿命的影响, 通过修正的Matake疲劳寿命预测模型进行疲劳寿命预测,如图14所示.

    图  14  修正的Matake准则下疲劳寿命预测结果
    Figure  14.  Fatigue life prediction with modified Matake criteria

    从图中可以看到,所有的预测结果都已经在3倍分散带以内,特别是双轴比γ为0.6预测结果有了较大的改善,说明修正后的疲劳寿命预测模型基本上满足了3种双轴比的疲劳寿命预测要求,具有较好的预测精度.

    (1) 等效应力作为损伤参量对双轴比γ不为1的疲劳寿命预测结果并不理想,并且难以反映不同双轴比对双轴拉伸疲劳寿命的影响.

    (2) Findley准则与Matake准则整体的疲劳寿命预测结果相差并不明显,但是针对非等轴加载的情况,Matake准则的疲劳寿命预测结果略有提高,验证了剪应力幅值对双轴拉伸疲劳有一定的影响.

    (3)采用修正的Matake的疲劳寿命预测模型比其他疲劳寿命预测模型的预测精度更高,所有的预测数据点都能在3倍分散带以内,并且修正后的参数k考虑了双轴比的影响以及剪应力与正应力之间的关系,更具有实际物理意义.

  • 图  1   不同水深下的激光焊效果[11]

    Figure  1.   Laser welding under different water depth

    图  2   水下湿法焊接中的激光诱导等离子体[15]

    Figure  2.   Photoinduced plasma in underwater wet welding

    图  3   水深4 mm激光功率对成形效果的影响[19]

    Figure  3.   Influence of laser power on forming effect under 4 mm deep water layer

    图  4   不同压力的光致等离子体云瞬态膨胀行为[45]

    Figure  4.   Photoinduced plasma transient expansion behavior under different pressures

    图  5   水下强冷却环境中形成的Ti和Mn损耗区[53]

    Figure  5.   Ti and Mn-depletion zone caused by high cooling rate

    图  6   水下和常规环境的激光熔覆层对比[58]

    Figure  6.   Comparison of laser cladding in local dry and normal environments

  • [1] 董振华. 船舶维修保养技术经济性研究[D]. 大连: 大连海事大学, 2009.

    Dong Zhenhua. Research on ship maintenance technology and economy [D]. Dalian : Dalian Maritime University, 2009.

    [2] 赵永涛, 殷敏谦, 曾红军, 等. 海洋平台结构损伤检测研究[J]. 中国海洋平台, 2008, 23(5): 23 − 26. doi: 10.3969/j.issn.1001-4500.2008.05.005

    Zhao Yongtao, Yin Minqian, Zeng Hongjun, et al. Research on structural damage detection of offshore platforms[J]. China Offshore Platforms, 2008, 23(5): 23 − 26. doi: 10.3969/j.issn.1001-4500.2008.05.005

    [3] 王家淳. 激光焊接技术的发展与展望[J]. 激光技术, 2001(1): 48 − 54. doi: 10.3969/j.issn.1001-3806.2001.01.004

    Wang Jiachun. Development and prospect of laser welding technology[J]. Laser Technology, 2001(1): 48 − 54. doi: 10.3969/j.issn.1001-3806.2001.01.004

    [4]

    Sun G F, Wang Z D, Lu Y, et al. Investigation on microstructure and mechanical properties of NV E690 steel joint by laser-MIG hybrid welding[J]. Materials & Design, 2017, 127: 297 − 310.

    [5]

    Hino T, Tamura M, Tanaka Y, et al. Development of underwater laser cladding and underwater laser seal welding techniques for reactor components[J]. Journal of Power and Energy Systems, 2009, 3(1): 51 − 59. doi: 10.1299/jpes.3.51

    [6] 王伟, 王泽明, 魏连峰, 等. 水下激光加工技术在核电维修领域的应用现状及发展[J]. 电焊机, 2020, 50(7): 74 − 79. doi: 10.7512/j.issn.1001-2303.2020.07.11

    Wang Wei, Wang Zeming, Wei Lianfeng, et al. Application status and development of underwater laser processing technology in the field of nuclear power maintenance[J]. Electric Welding Machine, 2020, 50(7): 74 − 79. doi: 10.7512/j.issn.1001-2303.2020.07.11

    [7]

    Sun G, Wang Z, Lu Y, et al. Underwater laser welding/cladding for high-performance repair of marine metal materials: A review[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 1 − 19. doi: 10.1186/s10033-021-00666-0

    [8]

    Parshin S, Levchenko A. Underwater hyperbaric dry welding of high strength steel arctic oil and gas pipelines[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2020: 012159.

    [9]

    Shannon G J, Watson J, Deans W F. Investigation into the underwater laser welding of steel[J]. Journal of Laser Applications, 1994, 6(4): 223 − 229. doi: 10.2351/1.4745360

    [10]

    Shannon G J, McNaught W, Deans W F, et al. High power laser welding in hyperbaric gas and water environments[J]. Journal of Laser Applications, 1997, 9(3): 129 − 136. doi: 10.2351/1.4745452

    [11]

    Guo N, Xing X, Zhao H, et al. Effect of water depth on weld quality and welding process in underwater fiber laser welding[J]. Materials & Design, 2017, 115: 112 − 120.

    [12] 秦航, 蔡志海, 朱加雷, 等. TC4钛合金水下湿法激光焊接焊缝组织与性能[J]. 焊接学报, 2019, 40(12): 143 − 148.

    Qin Hang, Cai Zhihai, Zhu Jialei, et al. Microstructure and properties of welding seam of TC4 titanium alloy by underwater wet laser welding[J]. Transactions of the China Welding Institution, 2019, 40(12): 143 − 148.

    [13] 邢霄. 304不锈钢水下激光焊接排水装置设计及焊接工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    Xing Xiao. Design and welding technology of 304 stainless steel underwater laser welding drainage device [D]. Harbin: Harbin Institute of Technology, 2017.

    [14] 李明, 张宏超, 沈中华, 等. 激光导致水击穿和等离子体形成过程的物理分析[J]. 光子学报, 2005(11): 12 − 16.

    Li Ming, Zhang Hongchao, Shen Zhonghua, et al. Physical analysis of water breakdown and plasma formation induced by laser[J]. Acta Photonica Sinica, 2005(11): 12 − 16.

    [15]

    Zhang X, Chen W, Ashida E, et al. Relationship between weld quality and optical emissions in underwater Nd: YAG laser welding[J]. Optics and Lasers in Engineering, 2004, 41(5): 717 − 730. doi: 10.1016/S0143-8166(03)00031-9

    [16]

    Zhang X, Chen W, Ashida E, et al. Laser–material interaction and process sensing in underwater Nd: yttrium–aluminum–garnet laser welding[J]. Journal of Laser Applications, 2003, 15(4): 279 − 284. doi: 10.2351/1.1620002

    [17]

    Zhang X, Ashida E, Shono S, et al. Effect of shielding conditions of local dry cavity on weld quality in underwater Nd: YAG laser welding[J]. Journal of Materials Processing Technology, 2006, 174(1-3): 34 − 41. doi: 10.1016/j.jmatprotec.2004.12.009

    [18]

    Mullick S, Madhukar Y K, Roy S, et al. An investigation of energy loss mechanisms in water-jet assisted underwater laser cutting process using an analytical model[J]. International Journal of Machine Tools and Manufacture, 2015, 91: 62 − 75. doi: 10.1016/j.ijmachtools.2015.02.005

    [19] 秦航, 蔡志海, 张平, 等. 中碳钢水下湿法激光焊接焊缝成形行为与性能[J]. 中国表面工程, 2019, 32(3): 130 − 137. doi: 10.11933/j.issn.1007-9289.20190123002

    Qin Hang, Cai Zhihai, Zhang Ping, et al. Weld forming behavior and properties of medium carbon steel by underwater wet laser welding[J]. China Surface Engineering, 2019, 32(3): 130 − 137. doi: 10.11933/j.issn.1007-9289.20190123002

    [20]

    Sakate P M, Mullick S, Gopinath M. An investigation on physical phenomena of water-jet assisted underwater wet laser welding technique under continuous and pulsed mode operation[J]. Optik, 2021, 242: 167272. doi: 10.1016/j.ijleo.2021.167272

    [21]

    Wen X, Jin G, Cui X, et al. Underwater wet laser cladding on 316L stainless steel: A protective material assisted method[J]. Optics & Laser Technology, 2019, 111: 814 − 824.

    [22] 冯相如. 水环境下Cu基合金激光沉积层的成形机理及性能调控[D]. 哈尔滨: 哈尔滨工程大学, 2019.

    Feng Xiangru. Formation mechanism and property control of laser deposited Cu-based alloys in water environment [D]. Harbin: Harbin Engineering University, 2019.

    [23] 吴广成, 张晓晖, 饶炯辉. 水下激光光束空间分布特性的实验研究[J]. 激光与红外, 2009, 39(2): 133 − 136. doi: 10.3969/j.issn.1001-5078.2009.02.004

    Wu Guangcheng, Zhang Xiaohui, Rao Jionghui. Experimental study on spatial distribution characteristics of underwater laser beam[J]. Laser and Infrared, 2009, 39(2): 133 − 136. doi: 10.3969/j.issn.1001-5078.2009.02.004

    [24] 李娜, 汤少华, 陆梦洁, 等. 激光波长对水体中激光诱导击穿光谱和空化气泡演化的影响[J]. 光学学报, 2002, 42(18): 41 − 48.

    Li Na, Tang Shaohua, Lu Mengjie, et al. Effect of laser wavelength on laser-induced breakdown spectra and cavitation bubble evolution in water[J]. Acta Optica Sinica, 2002, 42(18): 41 − 48.

    [25]

    Long J, Eliceiri M H, Ouyang Y, et al. Effects of immersion depth on the dynamics of cavitation bubbles generated during ns laser ablation of submerged targets[J]. Optics and Lasers in Engineering, 2021, 137: 106334. doi: 10.1016/j.optlaseng.2020.106334

    [26] 鲍家定. 水层特性对水下激光划切单晶硅质量的影响研究[D]. 桂林: 桂林电子科技大学, 2021.

    Bao Jiading. Study on the effect of water layer characteristics on the quality of underwater laser cutting monocrystalline silicon [D]. Guilin : Guilin University of Electronic Science and Technology, 2021.

    [27] 谢明. 激光诱导空化微成形实验研究[D]. 广州: 广东工业大学, 2021.

    Xie Ming. Experimental study on laser induced cavitation micro-forming [D]. Guangzhou: Guangdong University of Technology, 2021.

    [28]

    Zhao R, Liang Z, Xu R, et al. Dynamics of laser-induced cavitation bubble near solid boundary[J]. Japanese Journal of Applied Physics, 2008, 47(7R): 5482. doi: 10.1143/JJAP.47.5482

    [29]

    Chen X, Xu R Q, Shen Z H, et al. Optical investigation of cavitation erosion by laser-induced bubble collapse[J]. Optics & Laser Technology, 2004, 36(3): 197 − 203.

    [30] 强豪. 水环境激光空泡与金属靶材相互作用过程及机理研究[D]. 南京: 南京理工大学, 2018.

    Qiang Hao. Study on the interaction process and mechanism between laser void and metal target in water environment [D]. Nanjing : Nanjing University of Science and Technology, 2018.

    [31] 蔡志海, 尤家玉, 秦航, 等. 铝青铜水下湿法激光焊接焊缝成形与力学性能[J]. 装甲兵工程学院学报, 2019, 33(1): 104 − 109.

    Cai Zhihai, You Jiayu, Qin Hang, et al. Weld forming and mechanical properties of aluminum bronze by underwater wet laser welding[J]. Journal of Armored Forces, 2019, 33(1): 104 − 109.

    [32]

    Kumar V, Hussain M, Raza M S, et al. Fiber laser welding of thin nickel sheets in air and water medium[J]. Arabian Journal for Science and Engineering, 2017, 42: 1765 − 1773. doi: 10.1007/s13369-016-2305-1

    [33]

    Feng X, Cui X, Zheng W, et al. Effect of the protective materials and water on the repairing quality of nickel aluminum bronze during underwater wet laser repairing[J]. Optics & Laser Technology, 2019, 114: 140 − 145.

    [34] 肖镌璐. 高压干法水下激光熔覆表面修复工艺研究[D]. 北京: 北京化工大学, 2020.

    Xiao Juanlu. Research on surface repair technology of high pressure dry underwater laser cladding [D]. Beijing : Beijing University of Chemical Technology, 2020.

    [35] 邵长磊, 肖镌璐, 朱加雷, 等. 激光填丝熔覆表面修复工艺研究及压力环境验证[J]. 北京石油化工学院学报, 2021, 29(4): 14 − 18.

    Shao Changlei, Xiao Juanlu, Zhu Jialei, et al. Study on surface repair technology of laser wire cladding and verification of pressure environment[J]. Journal of Beijing Institute of Petrochemical Technology, 2021, 29(4): 14 − 18.

    [36]

    Pang S, Hirano K, Fabbro R, et al. Explanation of penetration depth variation during laser welding under variable ambient pressure[J]. Journal of Laser Applications, 2015, 27(2): 022007. doi: 10.2351/1.4913455

    [37]

    Luo M, Hu R, Li Q, et al. Physical understanding of keyhole and weld pool dynamics in laser welding under different water pressures[J]. International Journal of Heat and Mass Transfer, 2019, 137: 328 − 336. doi: 10.1016/j.ijheatmasstransfer.2019.03.129

    [38]

    Su J, Zhang Z, Xiao M, et al. Effects of ambient pressure on single-pulse laser processing of austenite stainless steel[J]. Journal of Materials Processing Technology, 2019, 263: 59 − 72. doi: 10.1016/j.jmatprotec.2018.07.015

    [39]

    Wang K, Shao C, Jiao X, et al. Investigation on microstructure and properties of duplex stainless steel welds by underwater laser welding with different shielding gas[J]. Materials, 2021, 14(17): 4774. doi: 10.3390/ma14174774

    [40]

    Wang K, Jiao X, Zhu J, et al. Effect of nitrogen protection on weld metal microstructure and intergranular behavior of S32101 duplex stainless steel 15 m water depth hyperbaric laser underwater welding[J]. Advances in Mechanical Engineering, 2022, 14(1): 1 − 12.

    [41]

    Luo Y, Tang X, Lu F, et al. Effect of subatmospheric pressure on plasma plume in fiber laser welding[J]. Journal of Materials Processing Technology, 2015, 215: 219 − 224. doi: 10.1016/j.jmatprotec.2014.08.011

    [42] 史俊锋. CO2激光深熔焊接光致等离子体行为的数值模拟[D]. 北京: 北京工业大学, 2001.

    Shi Junfeng. Numerical simulation of photoplasma behavior in CO2 laser deep penetration welding [D]. Beijing : Beijing University of Technology, 2001.

    [43] 王永贵. 侧吹气体对光致等离子体结构和屏蔽效应的影响[D]. 上海: 上海交通大学, 2014.

    Wang Yonggui. Influence of side-blown gas on the structure and shielding effect of photoplasma [D]. Shanghai : Shanghai Jiao Tong University, 2014.

    [44]

    Kawahito Y, Kinoshita K, Matsumoto N, et al. Effect of weakly ionised plasma on penetration of stainless steel weld produced with ultra high power density fibre laser[J]. Science and Technology of Welding and Joining, 2008, 13(8): 749 − 753. doi: 10.1179/136217108X356971

    [45]

    Long J, Zhang L J, Ning J, et al. Dynamic behavior of plasma and molten pool of pure titanium during hyperbaric laser welding[J]. Infrared Physics & Technology, 2021, 115: 103686.

    [46]

    Long J, Zhang L J, Zhang L L, et al. Towards better understanding of hyperbaric fiber laser spot welding of metallic material[J]. Journal of Manufacturing Processes, 2020, 56: 372 − 381. doi: 10.1016/j.jmapro.2020.04.087

    [47] 孙大为. 高功率激光焊接等离子体三维重建及能量传输研究[D]. 上海: 上海交通大学, 2015.

    Sun Dawei. 3D reconstruction and energy transfer of high power laser welding plasma [D]. Shanghai : Shanghai Jiao Tong University, 2015.

    [48]

    Qiu W, Yang L, Zhao S, et al. A study on plasma plume fluctuation characteristic during A304 stainless steel laser welding[J]. Journal of Manufacturing Processes, 2018, 33: 1 − 9.

    [49]

    Chida I, Mukai N, Kono W, et al. Development of multifunction laser welding head as maintenance technologies against stress corrosion cracking for nuclear power reactors[C]//International Conference on Nuclear Engineering, 2009: 319 − 325.

    [50]

    Hamada Y, Nagasawa K, Oowaki K, et al. Development of high reliable welding method with underwater laser welding technology for stainless steel made structures installed in underwater[C]//Japan Society of Maintenology. Annual Meeting of Japan Society of Maintenology, Tokyo, 2019: 24 − 26.

    [51] 姚杞. 不锈钢水下激光焊接研究[D]. 天津: 天津大学, 2014.

    Yao Qi. Research on underwater laser welding of stainless steel [D]. Tianjin : Tianjin University, 2014.

    [52] 李丛伟, 邵长磊, 朱加雷, 等. 304不锈钢局部干法水下激光填丝熔覆层微观组织及性能[J]. 焊接学报, 2019, 42(8): 67 − 74.

    Li Congwei, Shao Changlei, Zhu Jialei, et al. Microstructure and properties of 304 stainless steel localized dry process underwater laser wire cladding[J]. Transactions of the China Welding Institution, 2019, 42(8): 67 − 74.

    [53]

    Di X, Ji S, Cheng F, et al. Effect of cooling rate on microstructure, inclusions and mechanical properties of weld metal in simulated local dry underwater welding[J]. Materials & Design, 2015, 88: 505 − 513.

    [54] 黄尊月. 水介质下激光焊接机理及关键技术研究[D]. 天津: 天津大学, 2018.

    Huang Zunyue. Research on mechanism and key technology of laser welding in water medium [D]. Tianjin : Tianjin University, 2018.

    [55] 谷占飞. 活性剂辅助激光焊接组织性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2015.

    Gu Zhanfei. Study on microstructure and properties of activator-assisted laser welding [D]. Harbin: Harbin University of Science and Technology, 2015.

    [56]

    Huang Z Y, Luo Z, Ao S, et al. Underwater laser weld bowing distortion behavior and mechanism of thin 304 stainless steel plates[J]. Optics & Laser Technology, 2018, 106: 123 − 135.

    [57]

    Guo N, Wu D, Wang G, et al. Investigation on underwater wire-feed laser deposition of 5052 aluminum alloy[J]. Journal of Manufacturing Processes, 2022, 76: 687 − 694. doi: 10.1016/j.jmapro.2022.02.050

    [58]

    Fu Y, Guo N, Cheng Q, et al. In-situ formation of laser-cladded layer on Ti-6Al-4 V titanium alloy in underwater environment[J]. Optics and Lasers in Engineering, 2020, 131: 106104. doi: 10.1016/j.optlaseng.2020.106104

    [59]

    Guo N, Wu D, Yu M, et al. Microstructure and properties of Ti-6Al-4V titanium alloy prepared by underwater wire feeding laser deposition[J]. Journal of Manufacturing Processes, 2022, 73: 269 − 278. doi: 10.1016/j.jmapro.2021.11.002

    [60]

    Liu Y, Li C, Huang X F, et al. Investigation on solidification structure and temperature field with novel processing of synchronous powder-feeding underwater laser cladding[J]. Journal of Materials Processing Technology, 2021, 296: 117166. doi: 10.1016/j.jmatprotec.2021.117166

    [61]

    Liu C, Guo N, Cheng Q, et al. In situ formation of laser-cladded layer on thin-walled tube of aluminum alloy in underwater environment[J]. Materials, 2021, 14(16): 4729. doi: 10.3390/ma14164729

    [62] 郭宁, 王美荣, 郭伟, 等. 水下湿法自保护药芯焊丝[J]. 焊接学报, 2014, 35(5): 13 − 16.

    Guo Ning, Wang Meirong, Guo Wei, et al. Underwater wet self-protected flux-cored wire[J]. Transactions of the China Welding Institution, 2014, 35(5): 13 − 16.

    [63]

    Han Yongquan, Han Jiao, Chen Yan, et al. Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy[J]. China Welding, 2021, 30(3): 7 − 11.

    [64] 江东远. 6061铝合金超声波辅助激光焊接工艺研究[D]. 长沙: 湖南大学, 2020.

    Jiang Dongyuan. Study on ultrasound-assisted laser welding of 6061 aluminum alloy [D]. Changsha: Hunan University, 2020.

    [65] 张小凡, 张建勋, 王浩, 等. 稳态磁场辅助激光焊技术研究现状与展望[J]. 热加工工艺, 2022, 51(13): 1 − 8.

    Zhang Xiaofan, Zhang Jianxun, Wang Hao, et al. Research status and prospect of steady state magnetic field assisted laser welding technology[J]. Hot Working Technology, 2022, 51(13): 1 − 8.

图(6)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  21
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-12
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-04-24

目录

/

返回文章
返回