Growth behavior of inter metallic compounds at N06200 nickel alloy and S32168 stainless steel
-
摘要:
研究了N06200镍基合金与S32168不锈钢TIG焊接接头经焊后热处理后界面金属间化合物(Intermetallic Compounds, IMCs)的演变过程,并从热力学和动力学的角度分析界面IMCs的生成种类、先后顺序及生长动力学模型. 结果表明,随着热处理温度的升高,接头的抗拉强度呈现先升高后降低的趋势;随着保温时间的增加,接头的抗拉强度随之增加. 随着热处理温度的升高和保温时间的延长,界面IMCs的厚度增加. 镍基合金与不锈钢界面IMCs主要由NiFe相、Ni2Cr相、FeCr相和Ni3Fe相组成,形成IMCs的顺序为NiFe→FeCr→Ni2Cr→Ni3Fe. 界面IMCs的增长符合抛物线规律,经线性回归方法计算得出界面IMCs的生长动力学模型为 W=1.725 × 10−13·
$e^{[-45.98 /(R T)] \cdot t^{1 / 2}} $ .Abstract:The evolution process of IMCs at the interface between N06200 nickel-base alloy and S32168 stainless steel TIG welded joint after post-weld heat treatment was analyzed. The formation type, sequence and growth kinetics model of IMCs at the interface were analyzed through the perspective of thermodynamics and kinetics. The results showed that with the increase of heat treatment temperature, the tensile strength of the welding joint increases firstly and then decreases. With the increasing of holding time, the tensile strength of the joint increased. The IMCs at the interface between nickel base alloy and stainless steel after welding heat treatment were mainly composed of NiFe phase, Ni2Cr phase, FeCr phase and Ni3Fe phase. The thickness of IMCs layer at the interface increase with the increasing of heat treatment temperature and holding time. The formation sequence of IMCs was NiFe→FeCr→Ni2Cr→Ni3Fe. The growth of IMCs was in line with parabolic law. The kinetic model of IMCs was W=1.725 × 10−13·
$e^{[-45.98 /(R T)] \cdot t^{1 / 2}} $ . by linear regression method.-
Keywords:
- nickel-base alloy /
- stainless steel /
- IMCs /
- thermodynamics /
- kinetics
-
-
图 7 二元相图[16]
Figure 7. Binary phase diagram. (a) Fe-Ni; (b) Fe-Cr; (c) Ni-Cr
表 1 N06200母材、S32168母材及焊丝ERNiCrMo-17化学成分(质量分数,%)
Table 1 Chemical compositions of N06200, S32168 and ERNiCrMo-17
材料 Cr Mo Cu Mn C Si S P Ti Ni Fe N06200 23.00 16.00 1.60 0.19 ≤0.010 ≤0.08 ≤0.010 ≤0.020 — 余量 — S32168 18.12 — — 1.90 0.050 0.62 0.012 0.015 0.60 10.89 余量 ERNiCrMo-17 23.30 16.47 1.57 0.09 0.008 0.01 0.001 0.001 — 余量 — 表 2 N06200镍基合金与S32168不锈钢TIG焊接工艺参数
Table 2 TIG Welding parameter of N06200 nickel alloy and S32168 stainless steel
层次 焊接方法 焊材 规格 焊接电流I/A 电弧电压U/V 焊接速度v/(mm·min−1) 1 TIG ERNiCrMo-17 ϕ2.0 mm 100~120 15~17 70~90 2 130~150 15~17 80~100 表 3 图4中特殊位置的EDS点扫描结果
Table 3 EDS analysis results of the points showing in Fig.4
位置 元素含量w(质量分数, %) 相组成 Ni Fe Cr 1 76.94 0.36 22.70 Ni 2 47.89 50.24 1.87 NiFe 3 46.85 45.28 7.87 NiFe 4 7.69 75.48 16.83 Fe 5 46.54 44.58 8.88 NiFe 6 48.52 46.50 4.98 NiFe 7 7.78 47.64 44.48 FeCr 8 65.35 2.17 32.48 Ni2Cr 9 51.33 44.28 4.39 NiFe 10 72.41 25.10 2.49 Ni3Fe 11 48.29 47.56 4.15 NiFe 表 4 焊接界面IMCs在不同热处理温度下的生长率常数
Table 4 Calculated growth rate constants of interface IMCs at different heat treatment temperatures
温度T/K 生长率系数k/(10−13m2·s−1) 时间指数n 1273 2.02 0.489 1323 2.60 0.496 1373 3.17 0.519 1423 3.76 0.492 -
[1] 周峰, 赵霞, 查向东, 等. 一种新型镍基耐蚀合金与304奥氏体不锈钢异种金属焊接接头的组织和力学性能[J]. 金属学报, 2014, 50(11): 1335 − 1342. doi: 10.11900/0412.1961.2014.00284 Zhou Feng, Zhao Xia, Zha Xiangdong, et al. Microstructure and mechanical properties of the welding joint of a new corrosion-resisting nickel-based alloy and 304 austenitic stainless steel[J]. Acta Metallurgica Sinica, 2014, 50(11): 1335 − 1342. doi: 10.11900/0412.1961.2014.00284
[2] 宋建岭, 林三宝, 杨春利, 等. 镍基合金/不锈钢钨极惰性气体钎焊接头的特性[J]. 中国有色金属学报, 2008, 18(5): 834 − 839. doi: 10.3321/j.issn:1004-0609.2008.05.014 Song Jianling, Lin Sanbao, Yang Chunli, et al. Characteristics of tungsten inert gas brazing joints of nickel-based alloy and stainless steel[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(5): 834 − 839. doi: 10.3321/j.issn:1004-0609.2008.05.014
[3] 李宁, 王刚, 王廷, 等. Inconel 718镍基合金与304不锈钢电子束焊接[J]. 焊接学报, 2019, 40(2): 82 − 85. Li Ning, Wang Gang, Wang Ting, et al. Weldability of Inconel 718 and 304 stainless steel by electron beam welding[J]. Transactions of the China Welding Institution, 2019, 40(2): 82 − 85.
[4] 黄嘉森, 蔡创, 刘致杰, 等. Inconel690镍基合金/SUS304不锈钢激光焊接接头组织与力学性能[J]. 光学学报, 2023, 43(10): 14 − 20. Huang Jiasen, Cai Chuang, Liu Zhijie, et al. Microstructure and mechanical properties of laser welded Inconel690 nickel-based alloy/SUS304 stainless steel joints[J]. Acta Optica Sinica, 2023, 43(10): 14 − 20.
[5] 武靖伟, 王志刚, 刘宝剑, 等. N06200镍基合金与S32168不锈钢TIG焊接微观组织与力学性能研究[J]. 压力容器, 2023, 40(6): 15 − 21. doi: 10.3969/j.issn.1001-4837.2023.06.003 Wu Jingwei, Wang Zhigang, Liu Baojian, et al. Microstructure and mechanical properties of TIG welded joint of N06200 nickel base alloy and S32168 stainless steel[J]. Pressure Vessel Technology, 2023, 40(6): 15 − 21. doi: 10.3969/j.issn.1001-4837.2023.06.003
[6] Zhang X Y, Song R G, Sun B, et al. Effects of applied potential on the stress corrosion cracking behavior of 7003 aluminum alloy in acid and alkaline chloride solutions[J]. International Journal of Minerals, Metallurgy, and Materials, 2016, 23: 819 − 826. doi: 10.1007/s12613-016-1296-y
[7] 程俊义, 熊江英, 刘朝峰, 等. 一种新型第三代镍基粉末高温合金亚固溶热处理对调控γ"相分布的研究[J]. 稀有金属材料与工程, 2023, 52(2): 699 − 709. doi: 10.12442/j.issn.1002-185X.20220067 Cheng Junyi, Xiong Jiangying, Liu Zhaofeng, et al. Sub-solvus heat treatment study on the γ" distribution of novel nickel-based superalloy[J]. Rare Metal Materials and Engineering, 2023, 52(2): 699 − 709. doi: 10.12442/j.issn.1002-185X.20220067
[8] 金玉花, 甘瑞根, 邵庆丰, 等. 焊后退火Al-Mg界面金属间化合物生长行为[J]. 焊接学报, 2017, 38(8): 69 − 71. doi: 10.12073/j.hjxb.20150808001 Jin Yuhua, Gan Ruigen, Shao Qingfeng, et al. Growth behaviour of Al-Mg intermetallics during post weld annealing treatment[J]. Transactions of the China Welding Institution, 2017, 38(8): 69 − 71. doi: 10.12073/j.hjxb.20150808001
[9] 张忠科, 武靖伟, 赵华夏. 焊后热处理对钛/铝FSB接头组织及性能的影响[J]. 中国有色金属学报, 2020, 30(4): 739 − 749. doi: 10.11817/j.ysxb.1004.0609.2020-35762 Zhang Zhongke, Wu Jingwei, Zhao Huaxai. Effect of annealing treatment on interfacial microstructure and properties of Ti/Al FSB joint[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(4): 739 − 749. doi: 10.11817/j.ysxb.1004.0609.2020-35762
[10] 申中宝, 邱然锋, 石红信, 等. 铝/钢固态焊接合界面金属间化合物生长机制[J]. 焊接学报, 2019, 40(6): 58 − 63. doi: 10.12073/j.hjxb.2019400155 Shen Zhongbao, Qiu Ranfeng, Shi Hongxing, et al. Growth mechanism of intermetallic compounds at the solid-state joining interface of aluminum/steel[J]. Transactions of the China Welding Institution, 2019, 40(6): 58 − 63. doi: 10.12073/j.hjxb.2019400155
[11] 唐超兰, 郭校峰, 许秋平, 等. 铝钢复合界面金属间化合物生长行为[J]. 材料科学与工程学报, 2018, 36(5): 713 − 719. Tang Chaolan, Guo Xiaofeng, Xu Qiuping, et al. Research on growth behavior of intermetallic compounds at Al-Steel bonding interface[J]. Journal of Materials Science and Engineering, 2018, 36(5): 713 − 719.
[12] 马恒波, 任柯旭, 邱然锋, 等. 铜/铝固态界面金属间化合物的生长行为[J]. 材料热处理学报, 2019, 40(7): 60 − 67. Ma Hengbo, Ren Kexu, Qiu Ran, et al. Growth behavior of inter metallic compounds at Cu /Al solid state interface[J]. Transactions of Materials and Heat Treatment, 2019, 40(7): 60 − 67.
[13] 余磊, 曹睿. 镍基合金焊接裂纹研究现状[J]. 金属学报, 2021, 57(1): 16 − 28. doi: 10.11900/0412.1961.2020.00200 Yu Lei, Cao Rui. Welding crack of Ni-based alloys: A Review[J]. Acta Metallurgica Sinica, 2021, 57(1): 16 − 28. doi: 10.11900/0412.1961.2020.00200
[14] 王诗洋, 刘士伟, 侯星宇, 等. 焊丝成分对镍基高温合金TIG焊焊接性的影响[J]. 焊接学报, 2023, 44(3): 31 − 36,60. doi: 10.12073/j.hjxb.20220401001 Wang Shiyang, Liu Shiwei, Hou Xingyu, et al. Effect of wire composition on weldability of a Ni-based superalloy welded by TIG method[J]. Transactions of The China Welding Institution, 2023, 44(3): 31 − 36,60. doi: 10.12073/j.hjxb.20220401001
[15] Wang Y, Wang Y T, Li R, et al. Hall-petch relationship in selective laser melting additively manufactured metals: using grain or cell size[J]. Journal of Central South University, 2021, 28(4): 1043 − 1057. doi: 10.1007/s11771-021-4678-x
[16] 边书, 张玉妥, 王承志. Fe-Cr-Ni系相图计算[J]. 沈阳理工大学学报, 2011, 30(6): 17 − 21. doi: 10.3969/j.issn.1003-1251.2011.06.004 Bian Shu, Zhang Yutuo, Wang Chenzhi. Phase diagram calculation for Fe-Cr-Ni System[J]. Journal of Shenyang Ligong University, 2011, 30(6): 17 − 21. doi: 10.3969/j.issn.1003-1251.2011.06.004
[17] Zhao Y Y, Li J Y, Qiu R F, et al. Growth characterization of intermetallic compound at the Ti/Al solid state interface[J]. Materials, 2019, 12(3): 472 − 482. doi: 10.3390/ma12030472
[18] 吴铭方, 司乃潮, 王敬, 等. 铁/铝扩散偶界面反应层生长机理分析[J]. 焊接学报, 2011, 32(5): 29 − 32. Wu Mingfang, Si Naichao, Wang Jing, et al. Analysis on growth mechanism on interfacial interlayer on Fe/Al couple[J]. Transac tions of the China Welding Institution, 2011, 32(5): 29 − 32.
[19] 王星星, 杜全斌, 彭进, 等. AgCuZnSn钎料的热力学特性[J]. 中国有色金属学报, 2018, 28(6): 1159 − 1167. Wang Xingxing, Du Quanbin, Peng Jin, et al. Thermodynamics characteristics of AgCuZnSn brazing filler metals[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(6): 1159 − 1167.
[20] 韩丽青, 王自东, 龙斌, 等. 钛/不锈钢焊接界面金属间化合物的生成动力学[J]. 材料热处理学报, 2011, 32(2): 63 − 64. Han Liqing, Wang Zidong, Long Bin, et al. Formation kinetics of interfacial intermetallic compounds of TA2/316L welding joints[J]. Transactions of Materials and Heat Treatment, 2011, 32(2): 63 − 64.
[21] To S, Zhu Y H, Lee W B. Effects of cutting depth on the surface microstructure of a Zn-Al alloy during ultra-precision machining[J]. Applied Surface Science, 2008, 254(15): 1559 − 1564.
-
期刊类型引用(3)
1. 孙爽,许桂珍,刘贯军. Q355/SKH9高速钢激光重频焊接接头冲击韧性分析. 制造技术与机床. 2024(04): 33-37 . 百度学术
2. 尹东坤,徐锴,滕彬,武鹏博,黄瑞生,温子缘. 万瓦级激光高效焊接研究现状. 电焊机. 2024(05): 1-16 . 百度学术
3. 朱有坤,王钦伟,王远刚,秦川. 气体绝缘开关设备充气箱激光封焊工艺研究. 激光杂志. 2024(10): 236-239 . 百度学术
其他类型引用(0)