高级检索

Si元素对800 MPa级HSLA钢焊材熔敷金属组织及韧性的影响

Effects of Si content on microstructure and toughness of the 800 MPa grade high-strength low-alloy deposited metals

  • 摘要: 采用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、电子背散射衍射(EBSD)等试验,分析了不同Si元素含量(质量分数,%)对800 MPa级低合金高强(HSLA)钢焊材熔敷金属组织特征及韧性的影响. 结果表明,当Si元素含量从0.45%增加到0.66%时,熔敷金属(0.035C-0.45Si-1.47Mn-2.56Ni-0.68Cr-0.62Mo)的屈服强度从850 MPa增大到895 MPa,抗拉强度从917 MPa增大到954 MPa,−50 ℃冲击吸收能量从115 J降低到73 J;当Si元素含量为0.45%时,熔敷金属显微组织主要由板条贝氏体及部分粒状贝氏体和板条马氏体组成,各组织间呈相互交织状分布;而当Si元素含量增大到0.66%时,组织主要由细长条状的板条马氏体及部分板条贝氏体组成;随着Si元素含量增大,组织长宽比明显增大,且组织之间趋于平行分布. 熔敷金属由γ(奥氏体)→贝氏体/马氏体混合组织转变时的相变温度随着Si元素含量增加而降低,随着Si含量增大,熔敷金属板条和板条块亚结构由交织的短条状向平行的细长条状转变,板条束亚结构尺寸明显变大,板条束亚结构尺寸增加使熔敷金属的大角度晶界占比降低,熔敷金属的冲击韧性降低.

     

    Abstract: The influence of silicon (Si) on the microstructure and toughness of 800 MPa grade high-strength low-alloy (HSLA) deposited metals was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron backscatter diffraction (EBSD). Experimental findings revealed that the yield strength of the deposited metal (0.035C-0.45Si-1.47Mn-2.56Ni-0.68Cr-0.62Mo) increased from 850 MPa to 895 MPa, and the tensile strength rose from 917 MPa to 954 MPa, while the impact energy absorption at −50 ℃ decreased from 115 J to 73 J, as the Si content increased from 0.45% to 0.66%. The microstructure of the deposited metal with 0.45% Si primarily comprised lath bainite, with a smaller proportion of granular bainite and lath martensite. However, with an increase in Si content to 0.66%, the microstructure predominantly featured slender lath-shaped martensite, accompanied by some lath bainite. This increase in Si content from 0.45% to 0.66% led to a reduction in the transformation temperature of austenite → bainite/martensite mixed structure. As the Si content increased, the lath substructure and block substructure changed from interlaced distribution to parallel distribution, and both become slender. However, the size of packet substructure increased significantly, which reduces the proportion of the large angle grain boundary of the deposited metal, leading to a decrease in its impact toughness.

     

/

返回文章
返回