高级检索

SLM成形IN718合金高温持久各向异性影响因素

何思逸, 刘翔宇, 郭双全, 王宁, 肖磊, 徐轶

何思逸, 刘翔宇, 郭双全, 王宁, 肖磊, 徐轶. SLM成形IN718合金高温持久各向异性影响因素[J]. 焊接学报, 2024, 45(3): 91-98. DOI: 10.12073/j.hjxb.20230424002
引用本文: 何思逸, 刘翔宇, 郭双全, 王宁, 肖磊, 徐轶. SLM成形IN718合金高温持久各向异性影响因素[J]. 焊接学报, 2024, 45(3): 91-98. DOI: 10.12073/j.hjxb.20230424002
HE Siyi, LIU Xiangyu, GUO Shuangquan, WANG Ning, XIAO Lei, XU Yi. Study on factors affecting high temperature anisotropic stress rupture properties of SLM-IN718 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 91-98. DOI: 10.12073/j.hjxb.20230424002
Citation: HE Siyi, LIU Xiangyu, GUO Shuangquan, WANG Ning, XIAO Lei, XU Yi. Study on factors affecting high temperature anisotropic stress rupture properties of SLM-IN718 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 91-98. DOI: 10.12073/j.hjxb.20230424002

SLM成形IN718合金高温持久各向异性影响因素

基金项目: 中国工程院院地合作项目(2023DFZD30)
详细信息
    作者简介:

    何思逸,硕士;主要研究方向为高温合金、高温合金粉末及激光增材制造. Email: hesiyi98@my.swjtu.cn

    通讯作者:

    徐轶,博士,特聘研究员;主要研究方向为高温合金、结构功能一体化材料及高熵阻尼合金等. Email: xybwbj@swjtu.cn

  • 中图分类号: TG 456.7

Study on factors affecting high temperature anisotropic stress rupture properties of SLM-IN718 alloy

  • 摘要:

    为研究激光选区熔化(selective laser melting, SLM)成形IN718持久各向异性的影响因素,对其打印态分别进行固溶时效(solution treatment and aging, SA)和直接时效(direct aging, DA)处理,采用X射线衍射、扫描电子显微镜及电子背散射衍射对两种状态试样xOy面及yOz物相、显微组织和织构进行表征,并在690 MPa,650 ℃下对两种状态的横向/纵向试样进行持久性能测试,测试后对断口和截面裂纹进行了表征分析量化研究.研究表明,DA态试样很大程度保持了打印态的显微组织,有明显熔池痕迹. 晶粒尺寸几乎没有变化. 显微组织中有大量偏析,XRD显示有衍射强度微弱的MC相的峰.而SA态试样晶粒尺寸及分布与DA态试样类似,同时存在大范围的δ相析出.横向/纵向试样的高温持久性能的差异随着加载时裂纹萌生点数量差异的减小而减小.垂直于应力加载轴向的熔池结构及晶界结构的差异是影响其高温持久各向异性的关键因素.

    Abstract:

    IN718 components often need to be used in high temperature complex stress environment for a long time. High temperature stress rupture and anisotropy are important performance indexes. In order to study the influence factors on the lasting anisotropy of Selective Laser Melting (SLM) forming IN718, the printing state was treated by solution aging (SA) and direct aging (DA) respectively. X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron backscattering diffraction (EBSD) were used to characterize the phase, microstructure and texture of XY and YZ plane of the samples in two states. The stress rupture of the horizontal/vertical samples in two states was tested at 690 MPa and 650 ℃. After the test, the fracture and section crack were characterized and quantified. The results show that the printed microstructure of DA samples is maintained to a large extent, and there are obvious molten pool traces. The grain size hardly changes. The microstructure shows a large amount of segregation, and XRD shows a slight peak of MC phase. The grain size and distribution of SA samples are similar to that of DA samples, and there is a large range of δ phase precipitation. The difference of high temperature stress rupture between horizontal/vertical specimens decreases with the decrease of the number of crack initiation points. The difference of molten pool structure and grain boundary structure perpendicular to the stress loading axis is the key factor affecting its stress rupture anisotropy at high temperature.

  • 图  1   SLM成形试样及持久试样取样示意图(mm)

    Figure  1.   Diagram of SLM forming samples and stress rupture specimens. (a) sample size; (b) rectangular blocks; (c) cylindrical rods

    图  2   SA态和DA态试样XRD

    Figure  2.   XRD patterns of SA and DA samples

    图  3   SA试样yz面及xy面显微组织

    Figure  3.   Microstructure of yOz-plane and xOy -plane of SA samples. (a) OM; (b) SEM; (c) high magnification SEM

    图  4   DA态试样yOz面及xOy面显微组织

    Figure  4.   Microstructures of yOz -plane and xOy -plane of DA samples. (a) OM; (b) SEM; (c) high magnification SEM

    图  5   SA态试样和DA态试样yOz面及xOy面EBSD极图

    Figure  5.   yOz-plane and xOy-plane PF of SA samples and DA samples: (a) PF of yOz -plane of SA sample; (b) PF of xOy-plane of SA sample; (c) PF of yOz-plane of DA sample; (d) PF of xOy-plane of DA sample

    图  6   DA态试样和SA态试样晶粒尺寸分布及晶界取向差

    Figure  6.   Grain size distribution diagram and grain boundary orientation difference diagram of DA and SA samples. (a) grain size distribution diagram; (b) grain boundary orientation difference diagram

    图  7   SA态试样持久断口SEM

    Figure  7.   SEM of the stress rupture fractography of SA samples. (a) SEM at low magnification; (b) partial enlarged detail of Fig.7a; (c) SEM at high magnification

    图  8   DA态样持久断口SEM

    Figure  8.   SEM of the stress rupture fractography of DA samples. (a) SEM at low magnification; (b) partial enlarged detail of Fig.8a; (c) SEM at high magnification

    图  9   SA态试样持久断口截面形貌

    Figure  9.   Morphology of cross sections along the stress loading direction of SA. (a) SEM at low magnification; (b) partial enlarged detail of Fig.9(a)

    图  10   SA态试样裂纹分布示意图

    Figure  10.   Schematic distribution of cracks in SA samples. (a) vertical samples; (b) horizontal samples

    图  11   DA态试样持久断口截面形貌

    Figure  11.   Morphology of cross sections along the stress loading direction of DA. (a) SEM at low magnification; (b) partial enlarged detail of Fig.11(a)

    图  12   DA态试样裂纹分布示意图

    Figure  12.   Schematic distribution of cracks in DA samples. (a) vertical samples; (b) horizontal samples

    表  1   IN718粉末的化学成分测定(质量分数,%)

    Table  1   Determination of chemical composition of IN718 powder

    NiCrMoCNbAlTiFe
    52.619.73.00.0245.10.61.1余量
    下载: 导出CSV

    表  2   SA态试样及DA态试样持久性能

    Table  2   Stress rupture properties of SA and DA samples

    试样持久寿命tu / h断后伸长率Au ( %)
    SA态纵向42.67.95
    SA态横向24.71.62
    DA态纵向46.53.15
    DA态横向21.51.65
    下载: 导出CSV
  • [1]

    Yin Q A, Liu Z Q, Wang B, et al. Improving thermal conductivity of Inconel 718 through thermoelectric coupling to reduce cutting temperature[J]. Journal of Materials Research and Technology, 2022, 20: 950 − 957. doi: 10.1016/j.jmrt.2022.07.124

    [2]

    Kayalı Y, Kanca E, Gunen A. Effect of boronizing on microstructure, high-temperature wear and corrosion behavior of additive manufactured Inconel 718[J]. Materials Characterization, 2022, 191: 112155. doi: 10.1016/j.matchar.2022.112155

    [3]

    Wang W Z, Chen Z G, Lu W J, et al. Heat treatment for selective laser melting of Inconel 718 alloy with simultaneously enhanced tensile strength and fatigue properties[J]. Journal of Alloys and Compounds, 2022, 913: 165171.

    [4]

    Shi J J, Zhou S A, Chen H H, et al. Microstructure and creep anisotropy of Inconel 718 alloy processed by selective laser melting[J]. Materials Science and Engineering, 2021, 805: 140583. doi: 10.1016/j.msea.2020.140583

    [5]

    Balachandramurthi A R, Moverare J, Hansson T, et al. Anisotropic fatigue properties of alloy 718 manufactured by electron beam powder bed fusion[J]. International Journal of Fatigue, 2020, 141: 105898. doi: 10.1016/j.ijfatigue.2020.105898

    [6]

    Xu Z K, Murray J W, Hyde C J, et al. Effect of post processing on the creep performance of laser powder bed fused Inconel 718[J]. Additive Manufacturing, 2018, 24: 486 − 497. doi: 10.1016/j.addma.2018.10.027

    [7]

    Wang Q, Ge S X, Wu D Y, et al. Evolution of microstructural characteristics during creep behavior of Inconel 718 alloy[J]. Materials Science & Engineering, 2022, 857: 143859.

    [8]

    Sanchez S, Gaspard G, Hyde C J, et al. The creep behaviour of nickel alloy 718 manufactured by laser powder bed fusion[J]. Materials & Design, 2021, 204: 109647.

    [9]

    Zhang S Y, Wang L L, Lin X, et al. Precipitation behavior of δ phase and its effect on stress rupture properties of selective laser-melted Inconel 718 superalloy[J]. Composites, 2021, 224: 109202. doi: 10.1016/j.compositesb.2021.109202

    [10]

    Mahajan S, Pande C S, Imam M A, et al. Formation of annealing twins in f. c. c. crystals[J]. Acta Materialia, 1997, 45(6): 2633 − 2638. doi: 10.1016/S1359-6454(96)00336-9

    [11]

    Wang Y C, Wang L Y, Zhang B, et al. Building height-related creep properties of Inconel 718 superalloy fabricated by laser powder bed fusion[J]. Materials Science & Engineering, 2022, 854: 143861.

    [12]

    Xu Z, Cao L J, Zhu Q, et al. Creep property of Inconel 718 superalloy produced by selective laser melting compared to forging[J]. Materials Science & Engineering, 2020, 794: 139947.

    [13]

    Mclouth T D, Witkin D B, Lohser J R, et al. Elevated temperature notch sensitivity of Inconel 718 manufactured by selective laser melting[J]. Journal of Materials Engineering and Performance, 2021, 30: 4882 − 4890. doi: 10.1007/s11665-021-05522-9

    [14]

    Han Q Q, Gu Y C, Rossitza S, et al. Additive manufacturing of high-strength crack-free Ni-based Hastelloy X superalloy[J]. Additive Manufacturing, 2019, 30: 100919. doi: 10.1016/j.addma.2019.100919

  • 期刊类型引用(5)

    1. 于瑾佳,王琳. 磷酸盐-柠檬酸盐体系中Q235钢焊接接头磷化处理及耐蚀性. 电镀与精饰. 2023(02): 42-48 . 百度学术
    2. 柯志刚,朱丽慧,周任远,翟国丽. 钼对S30432耐热钢组织和性能的影响. 钢铁. 2020(07): 92-99 . 百度学术
    3. 韩晓辉,杨志斌,张志毅,雷振,史春元. 热输入对不锈钢激光搭接焊接头晶间腐蚀敏感性的影响. 焊接学报. 2019(04): 148-153+167 . 本站查看
    4. 张婧,李海新,殷子强,杨振林,杜永鹏,孔祥峰,袁新,李守彪. 焊接接头的腐蚀研究进展. 腐蚀科学与防护技术. 2018(06): 661-670 . 百度学术
    5. 张婧,李海新,杨振林,孔祥峰,王宁,郝长平. 水下焊接焊缝金属的晶间腐蚀研究. 热加工工艺. 2018(23): 17-20+24 . 百度学术

    其他类型引用(2)

图(12)  /  表(2)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  20
  • PDF下载量:  28
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-04-23
  • 网络出版日期:  2024-01-17
  • 刊出日期:  2024-03-24

目录

    /

    返回文章
    返回