高级检索

9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊焊缝组织和冲击性能分析

张超, 周猛兵, 崔雷, 陶欣, 王军, 王伟, 刘永长

张超, 周猛兵, 崔雷, 陶欣, 王军, 王伟, 刘永长. 9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊焊缝组织和冲击性能分析[J]. 焊接学报, 2024, 45(4): 36-42. DOI: 10.12073/j.hjxb.20230423002
引用本文: 张超, 周猛兵, 崔雷, 陶欣, 王军, 王伟, 刘永长. 9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊焊缝组织和冲击性能分析[J]. 焊接学报, 2024, 45(4): 36-42. DOI: 10.12073/j.hjxb.20230423002
ZHANG Chao, ZHOU Mengbing, CUI Lei, TAO Xin, WANG Jun, WANG Wei, LIU Yongchang. Microstructure and impact properties for friction stir welds of 9Cr-1.5W-0.15Ta heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 36-42. DOI: 10.12073/j.hjxb.20230423002
Citation: ZHANG Chao, ZHOU Mengbing, CUI Lei, TAO Xin, WANG Jun, WANG Wei, LIU Yongchang. Microstructure and impact properties for friction stir welds of 9Cr-1.5W-0.15Ta heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 36-42. DOI: 10.12073/j.hjxb.20230423002

9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊焊缝组织和冲击性能分析

基金项目: 国家自然科学基金资助项目(52034004);中核集团专项(QBH201).
详细信息
    作者简介:

    张超,硕士;主要从事低活化铁素体/马氏体钢、耐热钢搅拌摩擦焊连接机理、锆合金高能束焊接技术以及固相连接技术的相关研究工作; Email: 569405731@qq.com

  • 中图分类号: TG 456.9

Microstructure and impact properties for friction stir welds of 9Cr-1.5W-0.15Ta heat resistant steel

  • 摘要:

    对9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊焊缝的微观组织演变和冲击性能进行了分析. 结果表明,由于搅拌针剧烈的机械搅拌和焊接热循环的双重作用,搅拌摩擦焊缝区域内发生晶粒破碎、完全奥氏体化动态再结晶、晶界处M23C6相溶解和晶内M3C相析出,焊后较大的冷却速率抑制晶粒长大,促进了马氏体转变. 在−100 ~ 20 ℃温度内进行了冲击试验,随着冲击试验温度的增加,母材和FSW焊缝的冲击吸收能量均表现为单调增大的特征,同时冲击断裂模式由脆性断裂逐渐转变为延性断裂. 由于FSW焊缝中板条马氏体的形成、“针状”M3C碳化物的析出,FSW焊缝的硬度显著增大,并且在相同温度下FSW焊缝的冲击韧性发生降低,韧—脆转变温度由母材的−50 ℃升高至−40.2 ℃.

    Abstract:

    In this paper, the microstructure evolution and impact properties of friction stir welds of 9Cr-1.5W-0.15Ta heat resistant steel were studied. The results showed that due to the double effects of the mechanical stirring of the stir tool and the welding thermal cycle, grain breaking, fully austenitized dynamic recrystallization, dissolution of M23C6 phase at the grain boundaries and formation of M3C are materialized in the welds. Higher cooling rate after welding restrains the growth of grains, and promotes martensite transformation. The impact test was conducted in the temperature range of −100 ~ 20 ℃. With the increase of impact test temperature, the impact absorbing energy of base metal and FSW weld metal is monotonously increased, and the impact fracture mode changes from brittle fracture to ductile fracture. Due to the formation of lath martensite and the precipitation of "acicular" M3C carbide in FSW weld, the hardness of FSW weld increases significantly. At the same temperature, the impact toughness of FSW weld decreases. And, the ductile-brittle transition temperature of FSW weld increases from −50 ℃ of the base metal to −40.2 ℃.

  • 图  1   FSW焊缝的宏观形貌

    Figure  1.   Macromorphology of FSW weld

    图  2   V形缺口冲击试样尺寸(mm)

    Figure  2.   Dimensions of V-notch impact specimen

    图  3   母材和FSW焊缝的微观组织特征

    Figure  3.   Microstructure characteristics of BM and FSW weld. (a) the metallographic structure of BM; (b) the morphology of BM; (c) the microstructure of BM; (d) the RA diffraction patterns in BM; (e) the metallographic structure of FSW weld; (f) the morphology of FSW weld; (g) the microstructure of FSW weld; (h) the RA dark field image in FSW

    图  4   母材和FSW焊缝的析出相分布特征

    Figure  4.   Precipitates characteristics of BM and FSW weld. (a) the distribution characteristics of precipitated phases in the BM; (b) the characteristics of M23C6 phase in the BM; (c) the characteristics of MX phase in the BM; (d) the distribution characteristics of precipitated phases in the FSW weld; (e) the characteristics of MX phase in the FSW weld; (f) the characteristics of M3C phase in the FSW weld

    图  5   母材和FSW焊缝冲击韧性随试验温度的变化曲线

    Figure  5.   Transformation curve of impact toughness of base metal and FSW weld with test temperature

    图  6   母材在不同温度下的冲击断口形貌

    Figure  6.   Impact fracture morphology of BM under different temperature. (a) 20 ℃; (b) 0 ℃; (c) −20 ℃; (d) −40 ℃; (e) −60 ℃; (f) −80 ℃

    图  7   FSW焊缝在不同温度下的冲击断口形貌

    Figure  7.   Impact fracture morphology of FSW welds under different temperature. (a) 20 ℃; (b) 0 ℃; (c) −20 ℃; (d) −40 ℃; (e) −60 ℃; (f) −80 ℃

    表  1   9Cr-1.5W-0.15Ta耐热钢化学成分(质量分数,%)

    Table  1   Chemical composition of the 9Cr-1.5W-0.15Ta heat resistant steel

    CCrMnVWTaSiZrNS和PFe
    0.190.50.21.50.150.050.0050.0070.002余量
    下载: 导出CSV

    表  2   母材和FSW焊缝冲击试验结果

    Table  2   Impact test results of the base materials and FSW welds

    温度
    T/℃
    母材平均冲击
    吸收功能量AKVB/(J·cm−2)
    FSW焊缝平均
    冲击吸收能量AKVW/(J·cm−2)
    20 155.1 132.7
    0 149.7 122.0
    −20 130.1 107.5
    −40 96.1 85.8
    −60 69.1 58.5
    −80 45.0 33.7
    −100 21.4 12.9
    下载: 导出CSV
  • [1]

    Byun T S, Yoon J H, Hoelzer D T, et al. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness[J]. Journal of Nuclear Materials, 2014, 449: 290 − 299. doi: 10.1016/j.jnucmat.2013.10.007

    [2] 李萍, 丁方强, 薛可敏. 低活化马氏体钢真空扩散焊接工艺[J]. 焊接学报, 2018, 39(1): 93 − 96.

    Li Ping, Ding Fangqiang, Xue Kemin. Vacuum diffusion welding process of low activation martensite steel[J]. Transactions of the China Welding Institution, 2018, 39(1): 93 − 96.

    [3] 周军, 邱绍宇, 邱日盛, 等. Si含量对9%Cr铁素体马氏体钢Laves相析出行为和冲击性能的影响[J]. 材料热处理学报, 2022, 43(5): 116 − 123.

    Zhou Jun, Qiu Shaoyu, Qiu Risheng, et al. Effect of Si content on laves phase precipitation behavior and impact properties of 9% Cr ferritic martensitic steel[J]. Journal of Material Heat Treatment, 2022, 43(5): 116 − 123.

    [4]

    Dudko V, Belyakov A, Kaibyshev R. Origin of threshold stresses in a P92-type steel[J]. Transactions of the Indian Institute of Metals, 2016, 69: 223 − 227. doi: 10.1007/s12666-015-0757-8

    [5]

    Chatterjee A, Moitra A, Bhaduri A K, et al. Dynamic fracture behaviour of thermo-mechanically processed modified 9Cr-1Mo steel[J]. Engineering Fracture Mechanics, 2016, 149: 74 − 88.

    [6] 唐文珅, 杨新岐, 李胜利, 等. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115 − 121.

    Tang Wenshen, Yang Xinqi, Li Shengli, et al. Effect of welding parameters on microstructure and properties of friction stir welded joints of ferritic stainless steel[J]. Journal of Materials Engineering, 2019, 47(5): 115 − 121.

    [7] 邓运来, 邓舒浩, 叶凌英, 等. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131 − 138.

    Deng Yunlai, Deng Shuhao, Ye Lingying, et al. Effect of post weld heat treatment on microstructure and mechanical properties of AA7204-T4 aluminum alloy friction stir welded joint[J]. Journal of Materials Engineering, 2020, 48(4): 131 − 138.

    [8] 宋婕, 常英珂, 吴瑞德, 等. 13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理[J]. 材料导报, 2022, 4: 164 − 168.

    Song Jie, Chang Yingke, Wu Ruide, et al. Ductile brittle transition and embrittlement mechanism of 13Cr11Ni2W2MoV martensitic heat strength stainless steel[J]. Materials Review, 2022, 4: 164 − 168.

    [9]

    Zhang Chao, Cui Lei, Wang Dongpo, et al. Effect of microstructures to tensile and impact properties of stir zone on 9%Cr reduced activation ferritic/martensitic steel friction stir welds[J]. Materials Science and Engineering A, 2018, 729: 257 − 267. doi: 10.1016/j.msea.2018.05.043

    [10]

    Tavassoli A A F, Diegele E, Lindau R, et al. Current status and recent research achievements in ferritic/martensitic steels[J]. Journal of Nuclear Materials, 2014, 455: 269 − 276. doi: 10.1016/j.jnucmat.2014.06.017

    [11]

    Zhang C, Cui L, Liu Y, et al. Microstructures and mechanical properties of friction stir welds on 9% Cr reduced activation ferritic/martensitic steel[J]. Journal of Materials Science & Technology, 2018, 34: 756 − 766.

    [12]

    Chatterjee A, Chakrabarti D, Moitra A, et al. Effect of normalization temperatures on ductile-brittle transition temperature of a modified 9Cr-1Mo steel[J]. Materials Science & Engineering A, 2014, 618: 219 − 231.

    [13]

    Zhao M, Zeng T, Li J, et al. Identification of the effective grain size responsible for the ductile to brittle transition temperature for steel with an ultrafine grain size ferrite/cementite microstructure with a bimodal ferrite grain size distribution[J]. Materials Science & Engineering A, 2011, 528: 4217 − 4221.

    [14]

    Chatterjee A, Chakrabarti D, Moitra A, et al. Effect of deformation temperature on the ductile–brittle transition behavior of a modified 9Cr–1Mo steel[J]. Materials Science and Engineering A, 2015, 630: 58 − 70. doi: 10.1016/j.msea.2015.01.076

    [15]

    Noh S, Ando M, Tanigawa H, et al. Friction stir welding of F82H steel for fusion applications[J]. Journal of Nuclear Materials, 2016, 478: 1 − 6. doi: 10.1016/j.jnucmat.2016.05.028

    [16]

    Sawada K, Hara T, Tabuchi M, et al. Microstructure characterization of heat affected zone after welding in Mod. 9Cr–1Mo steel[J]. Materials Characterization, 2015, 101: 106 − 113. doi: 10.1016/j.matchar.2015.01.013

    [17]

    Pandey C, Giri A, Mahapatra M M. Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties[J]. Materials Science and Engineering:A, 2016, 664: 58 − 74. doi: 10.1016/j.msea.2016.03.132

    [18]

    American Society of Testing Materials. Standard methods for notch bar impact testing of metallic materials: ASTM E23 [S]. West Conshohocken, Pa: ASTM International, 2013.

    [19]

    Zhang J C, Di H S, Deng Y G, et al. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel[J]. Materials Science and Engineering A, 2015, 627: 230 − 240. doi: 10.1016/j.msea.2015.01.006

    [20] 赵洋洋, 林可欣, 王颖, 等. 基于位错模型的增材制造构件疲劳裂纹萌生行为[J]. 焊接学报, 2023, 44(7): 1 − 8.

    Zhao Yangyang, Lin Kexin, Wang Ying, et al. Fatigue crack initiation behavior of additive manufacturing components based on dislocation model[J]. Transactions of the China Welding Institution, 2023, 44(7): 1 − 8.

    [21] 田成川, 赵海, 田妮, 等. 长期服役对P91钢蒸汽管道接头疲劳裂纹扩展行为的影响[J]. 材料与冶金学报, 2023, 22(6): 588 − 594.

    Tian Chengchuan, Zhao Hai, Tian Ni, et al. Effect of long-term service on fatigue crack propagation behavior of P91 steel steam pipe joint[J]. Journal of Materials and Metallurgy, 2023, 22(6): 588 − 594.

  • 期刊类型引用(3)

    1. 饶德林,张瑞尧,S.Paddea,张书彦. 非均匀残余应力的钻孔法测量原理及应用. 中国测试. 2024(S1): 166-170 . 百度学术
    2. 苏昊,周蠡,张超. 大口径复合材料顶管接头应力分布模拟仿真. 粘接. 2024(09): 79-82 . 百度学术
    3. 潘寿虎,陈国仓,申东滨,倪俊国,秦璐璐. 动态汽车衡型式评价中关于“零点问题”的分析. 计量与测试技术. 2024(11): 74-75+78 . 百度学术

    其他类型引用(2)

图(7)  /  表(2)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  20
  • PDF下载量:  36
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-04-22
  • 网络出版日期:  2024-03-03
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回