高级检索

基于摆动激光扫描的GMAW焊缝成形调控

肖珺, 葛欣雨, 盖胜男, 陈树君, 盛卫星, 陈少君

肖珺, 葛欣雨, 盖胜男, 陈树君, 盛卫星, 陈少君. 基于摆动激光扫描的GMAW焊缝成形调控[J]. 焊接学报, 2024, 45(4): 7-12. DOI: 10.12073/j.hjxb.20230423001
引用本文: 肖珺, 葛欣雨, 盖胜男, 陈树君, 盛卫星, 陈少君. 基于摆动激光扫描的GMAW焊缝成形调控[J]. 焊接学报, 2024, 45(4): 7-12. DOI: 10.12073/j.hjxb.20230423001
XIAO Jun, GE Xinyu, GAI Shengnan, CHEN Shujun, SHENG Weixing, CHEN Shaojun. Regulation of bead formation in GMAW based on oscillating-laser scanning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 7-12. DOI: 10.12073/j.hjxb.20230423001
Citation: XIAO Jun, GE Xinyu, GAI Shengnan, CHEN Shujun, SHENG Weixing, CHEN Shaojun. Regulation of bead formation in GMAW based on oscillating-laser scanning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 7-12. DOI: 10.12073/j.hjxb.20230423001

基于摆动激光扫描的GMAW焊缝成形调控

基金项目: 国家重点研发计划资助项目(2022YFB3404700);国家自然科学基金资助项目(52275304).
详细信息
    作者简介:

    肖珺,博士,教授,博士研究生导师;主要从事先进焊接与增材制造方法研究;Email: jun.xiao@bjut.edu.cn

    通讯作者:

    陈树君,博士,教授;Email: sjchen@bjut.edu.cn

  • 中图分类号: TG 456.7;TG 444+.4

Regulation of bead formation in GMAW based on oscillating-laser scanning

  • 摘要:

    将摆动激光与GMAW工艺复合,利用“8”字形摆动激光扫描液态熔池,对其温度场和流场进行调控,以改变熔池温度梯度,主动调控熔池流动以改善焊缝成形. 在6061铝合金板材表面进行堆焊试验,重点探究了光丝间距、摆动幅度、激光功率对于焊缝成形的影响,采用高速摄像机拍摄激光扫描熔池过程. 结果表明,摆动激光扫描可以有效抑制成形缺陷的发生,当摆动激光扫描熔池中部时可以获得最佳的焊缝成形效果. 摆动激光扫描降低了熔池温度梯度分布,同时激光扫描产生的激光蒸发反力可以驱动熔池流动,促进了液态熔池的流动铺展,从而有效抑制了不规则焊缝成形缺陷,减少焊缝内部气孔和裂纹缺陷. 调节摆动激光摆幅可以在一定范围内对焊缝宽度进行调控.

    Abstract:

    "8"-shaped oscillating-laser scanning was adopted in GMAW (gas metal arc welding) process to modify the weld pool flow pattern and its temperature field, and thus improve the weld bead formation. Bead-on-plate welding experiments were conducted on 6061 aluminum alloy plates. The effects of major laser scanning parameters, such as the laser-wire distance, laser power and the oscillation amplitude, were experimentally analyzed. A high-speed camera was used to capture the process of laser scanning and the weld pool. Experimental results indicated that oscillating laser scanning could effectively suppress weld bead formation defects; optimal weld formation was obtained when applying oscillating-laser scanning across the middle part of the molten pool. Oscillating-laser scanning reduced the temperature gradients of the weld pool. The laser recoil force could drive the molten pool flow actively, and thus promote the liquid metal spreading and effectively suppress irregularities in bead formation while reducing internal porosity and crack defects. Furthermore, the bead width could be adjusted within a certain range by adjusting the laser scanning amplitude.

  • 图  1   激光扫描熔池中部复合成形示意图

    Figure  1.   Schematic diagram of oscillating laser arc hybrid welding

    图  2   光丝间距对焊缝成形的影响(俯视图)

    Figure  2.   Effect of Dla on bead formation (top view)

    图  3   光丝间距对焊缝成形的影响(侧视图)

    Figure  3.   Effect of Dla on bead formation (side view)

    图  4   摆动激光扫描熔池示意图

    Figure  4.   Schematic diagram of laser scanning on weld pool

    图  5   摆动激光熔化熔池两侧附近的母材

    Figure  5.   Laser melting of the base metal on side area near the weld pool

    图  6   激光阻碍后向金属流

    Figure  6.   Laser obstructs the backward metal flow

    图  7   激光扫描功率对焊缝成形的影响

    Figure  7.   Effect of scanning laser power on weld bead formation

    图  8   激光摆动幅度对焊缝成形的影响

    Figure  8.   Effect of laser oscillating amplitude on bead formation

    图  9   激光摆动幅度对焊缝熔宽的影响

    Figure  9.   Effect of oscillating amplitude on bead width

    图  10   摆动激光扫描对层间结合的作用

    Figure  10.   Effect of oscillating laser scanning on interlayer bonding. (a) cross-section of GMAW; (b) fusion zone of GMAW; (c) cross-section of laser scanned bead; (d) fusion zone of laser scanned bead

    表  1   工艺试验参数-光丝间距的影响

    Table  1   Experimental parameters-effect of Dla

    序号激光功率
    P/W
    光丝间距
    Dla/mm
    摆动
    图样
    摆动幅度
    A/mm
    10
    21 0000“8”字5.0
    31 0001“8”字5.0
    41 0002“8”字5.0
    51 0003“8”字5.0
    61 0004“8”字5.0
    下载: 导出CSV

    表  3   工艺试验参数-激光摆幅的影响

    Table  3   Experimental parameters-effect of A

    焊接
    次序
    激光功率
    P/W
    光丝间距
    Dla/mm
    摆动
    图样
    摆动幅度
    A/mm
    11 0002“8”字0
    21 0002“8”字2.0
    31 0002“8”字4.0
    41 0002“8”字4.5
    51 0002“8”字5.0
    61 0002“8”字5.5
    下载: 导出CSV

    表  2   工艺试验参数-激光功率的影响

    Table  2   Experimental parameters-effect of P

    焊接
    次序
    激光功率
    P/W
    光丝间距
    Dla/mm
    摆动
    图样
    摆动幅度
    A/mm
    10
    25002“8”字5.0
    31 0002“8”字5.0
    41 5002“8”字5.0
    下载: 导出CSV
  • [1] 何鹏, 柏兴旺, 周祥曼, 等. MIG电弧增材制造6061铝合金的组织和性能[J]. 焊接学报, 2022, 43(2): 50 − 54,60. doi: 10.12073/j.hjxb.20210608001

    He Peng, Bai Xingwang, Zhou Xiangman, et al. Microstructure and properties of 6061 aluminum alloy by MIG wire and arc additive manufacturing[J]. Transactions of the China Welding Institution, 2022, 43(2): 50 − 54,60. doi: 10.12073/j.hjxb.20210608001

    [2]

    Zhang H, Chen C. Effect of pulse frequency on weld appearance of Al alloy in pulse power ultrasonic assisted GMAW[J]. Journal of Manufacturing Processes, 2021, 71: 565 − 570. doi: 10.1016/j.jmapro.2021.09.047

    [3]

    Li Y, Tian S, Wu C S, et al. Experimental sensing of molten flow velocity, weld pool and keyhole geometries in ultrasonic-assisted plasma arc welding[J]. Journal of Manufacturing Processes, 2021, 64: 1412 − 1419. doi: 10.1016/j.jmapro.2021.03.005

    [4]

    Liu Z, Jin X, Zhang J, et al. Microstructure evolution and mechanical properties of SUS301L stainless steel sheet welded joint in ultrasonic vibration assisted laser welding[J]. Optics & Laser Technology, 2022, 153: 108193.

    [5]

    Ye M, Wang Z, Butt H A, et al. Enhancing the joint of dissimilar aluminum alloys through MIG welding approach assisted by ultrasonic frequency pulse[J]. Materials Letters, 2023, 330: 133289. doi: 10.1016/j.matlet.2022.133289

    [6]

    Fan Ding, Wang Yazhou, Li Dequan, et al. Numerical analysis of arc-droplet behavior in thin wire high current MAG welding with magnetic control[J]. China Welding, 2023, 32(4): 29 − 37.

    [7]

    Wang L, Wu C S, Gao J Q. Suppression of humping bead in high speed GMAW with external magnetic field[J]. Science and Technology of Welding and Joining, 2016, 21(2): 131 − 139. doi: 10.1179/1362171815Y.0000000074

    [8]

    Acherjee B. Hybrid laser arc welding: State-of-art review[J]. Optics & Laser Technology, 2018, 99: 60 − 71.

    [9]

    Liu T, Mu Z, Hu R, et al. Sinusoidal oscillating laser welding of 7075 aluminum alloy: Hydrodynamics, porosity formation and optimization[J]. International Journal of Heat and Mass Transfer, 2019, 140: 346 − 358. doi: 10.1016/j.ijheatmasstransfer.2019.05.111

    [10]

    Wang L, Liu Y, Yang C, et al. Study of porosity suppression in oscillating laser-MIG hybrid welding of AA6082 aluminum alloy[J]. Journal of Materials Processing Technology, 2021, 292: 117053. doi: 10.1016/j.jmatprotec.2021.117053

    [11]

    Zhao X, Zhang W, Chen H, et al. Analysis of dynamic characteristics of vapor plume of oscillating laser welding of SUS301L-HT stainless steel[J]. Optics & Laser Technology, 2023, 159: 108947.

图(10)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-22
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回