Path optimization for wire arc additive manufacturing based on adaptive contour skeleton zoning method
-
摘要: 传统轮廓偏置路径规划方法具有较高几何还原度,适合电弧增材制造中等尺寸的复杂零件,但轮廓连续偏置过程中的退化现象易形成欠填充区域,进而导致缺陷,形成待优化区. 针对上述问题,提出了基于布尔运算的待优化区域精确识别方法. 将原始多边形与经过正反两次等距偏置的回溯多边形进行布尔差运算,可获得需要优化的缺陷区域,将待优化区域过滤与合并,重新构建为骨架填充区. 结合最小矩形框确定每个骨架填充区的最优填充方向并生成往复直线路径,最后将轮廓偏置路径重新分类分区连接为连续成形路径,并按照骨架填充区成形路径优先打印原则输出为机器代码. 后续成形试验采用机器人电弧增材制造系统打印了螺旋桨零件,结果表明,零件成形尺寸达到预期,且表面不存在传统轮廓偏置法中的成形缺陷,证明文中方法具有较高的可行性与适用性.Abstract: The traditional contour offset path planning strategy for arc-based directed energy deposition of medium-sized complex parts has a high degree of geometric fidelity. However, continuous offsetting of original contour can easily lead to underfilled regions and defects, that can be forming the area to be optimized. To address this, a precise defect identification method based on Boolean operations is proposed. The defect region is obtained by calculating the Boolean difference between the original and backtracked polygons. This region is reconstructed into skeleton-filled areas through filtering and merging. The optimal filling direction of skeleton-filled areas is determined by the minimum rectangular box, and the zigzag path is generated. Finally, the contour offset path is reclassified and connected to form a continuous forming path. The forming path of skeleton-filled areas is firstly transformed into machine code. In the subsequent forming test, the propeller parts were printed by the robot arc additive manufacturing system. The results indicate that the parts have achieved the expected forming size, and there are no defects in the traditional method. This proves that the method has highly feasible and applicable.
-
0. 序言
搅拌摩擦焊(friction stir welding, FSW)作为一种固相焊接技术,具有焊缝质量高、变形小等优点[1-2]. 目前加工制造业对焊接智能化、高效化的要求日益上升,机器人搅拌摩擦焊得以更普遍的应用.在实际大型结构的FSW生产中,由于接头形式、板材加工精度以及工装夹具装配质量问题,焊接过程容易产生较大的间隙,对接头的成形和性能极为不利[3-4],当工件之间的间隙超过工件厚度的10%时,很难获得无缺陷质量良好的接头[5]. 间隙的存在导致焊核区(weld nugget zone,WNZ)材料流动不充分,焊缝出现孔洞和隧道等缺陷[6]. 同时,工件被塑化的材料流入间隙,弥补材料缺失使得焊缝位置减薄严重,降低接头承载能力[7].
研究人员[8-9]采用粉末、焊丝或者补偿条作为填充材料对大间隙下的工件进行FSW,得到成形良好无缺陷的接头,接头与常规FSW接头力学性能吻合,然而,当焊接速度过快时,这些填充材料很容易飞出间隙,从而形成缺陷. 同时填充材料需要在焊前放置在间隙内,针对复杂结构间隙及焊接过程中产生的间隙,填充材料的尺寸以及填料的连续性受到限制.
基于传统搅拌摩擦焊方法,填充材料旁轴送料,将FSW与填料过程同时进行,实现大间隙机器人搅拌摩擦填丝焊,并对其接头进行盐雾腐蚀试验,分析搅拌摩擦填丝焊接头不同区域的腐蚀行为差异.搅拌摩擦填丝焊提高了FSW对工况条件的适应性,适用于高铁、船舶和飞机上大型及复杂结构焊缝,有望为工程实际应用提供理论依据和技术支撑.
1. 试验方法
试验材料为5A06铝合金轧制板材,尺寸为300 mm × 70 mm × 3 mm,填充材料为直径1.6 mm的5B06丝材. 机器人搅拌摩擦填丝焊焊接过程示意图及焊具尺寸如图1所示,对接板材焊接间隙为2 mm. 填充丝材经过高推力送丝系统从送丝孔连续输送到储料腔内部,高速旋转的螺杆将金属丝材剪切成粒状材料,粒状材料在自身重力及与螺杆侧壁的摩擦力的影响下,在储料腔内塑化从底部的缝隙流出. 轴向压力使储料腔与板材之间产生挤压效果,粒状材料发生变形堆积并被塑化. 在旋转的搅拌针的驱动作用下,塑化的填充材料发生流动并实现与基材的连接. 试验所采用的焊接工艺参数为转速3 000 r/min,焊接速度200 mm/min,送丝速度1.8 m/min,轴向压力5 000 N,倾角1.5°.
2. 试验结果与分析
2.1 焊缝成形
图2为机器人搅拌摩擦填丝焊接头焊缝表面形貌. 焊缝表面光滑成形良好,无沟槽缺陷,在搅拌针的驱动作用下,塑化的填充材料发生流动后沉积弥补了间隙位置材料缺失,同时焊缝有一定程度的增厚,提高了接头的承载能力.
2.2 焊缝微观组织
图3为焊缝整体微观形貌及不同区域的微观组织. 焊接接头填充材料与基体母材结合良好,焊缝无孔洞及隧道缺陷,由于搅拌针的存在,搅拌针促进塑化的丝材和基材发生流动,提高了填充材料与基材的结合效果. 丝材经过螺杆的剪切及静轴肩的挤压作用,与焊核区受到搅拌针的搅拌作用一样,填充材料也经历了大塑性变形,发生动态再结晶,形成细小的等轴晶.
2.3 焊缝腐蚀性能
搅拌摩擦填丝焊接头经过7天盐雾腐蚀试验后接头各区域腐蚀形貌如图4所示. 接头表面均发生了点蚀坑的萌生, 表面出现腐蚀产物;焊核区及填充材料区域的点蚀坑尺寸较小,且分布较为均匀;母材点蚀坑分布不均匀,尺寸较大.热力影响区(thermo- mechanically affected zone,TMAZ)的点蚀坑随晶粒分布特征呈流线分布,热影响区(heat-affected zone,HAZ)的点蚀坑尺寸较大,且出现一定的聚集现象,点蚀坑发生扩展.焊核区和填充材料区表现出更好的耐腐蚀性能.
第二相分布及尺寸对点蚀坑的形成有巨大影响,第二相和基体之间形成微电偶会导致腐蚀现象发生.焊核区经过塑性变形后第二相颗粒被打碎,尺寸较小分布也更均匀,进而发生腐蚀现象后点蚀坑分布均匀细小;填充材料区域拥有更小且弥散分布的第二相颗粒,填充材料的加入增强了焊核区的耐蚀性.经过轧制后的母材中第二相颗粒尺寸较大且分布不均匀,耐蚀性较差易形成较大的点蚀坑;热力影响区点蚀坑呈流线分布,而热影响区第二相颗粒发生聚集长大,发生点蚀后有利于点蚀坑的扩展,导致热影响区的耐蚀性较差.
图5为热影响区点蚀坑SEM图及附近元素分布.发现在第二相Al6(FeMn)附近产生了明显的腐蚀现象, 点蚀坑发生扩展. 在盐雾环境中,铝合金表面虽然存在一层氧化膜,但是随着溶液中Cl−的侵入,Cl−破坏了表面氧化膜,促进点蚀现象发生. 同时热影响区第二相颗粒Al6(FeMn)与铝基体之间存在腐蚀电位差形成原电池,由于Al6(FeMn)电位高于铝基体[10],第二相颗粒在腐蚀过程中充当阴极,促使周围基体发生腐蚀,因此在第二相附近形成环形腐蚀区域产生腐蚀坑并向四周扩展. 当第二相尺寸较大时,周围基体溶解的范围增大,点蚀坑的尺寸也会更大. 基于元素分布图可以看出,在腐蚀坑附近Al元素含量减少,点蚀坑内金属发生溶解,点蚀孔内阳离子浓度升高,Cl−就会不断侵入以维持平衡.随着Cl−浓度的升高发生水解,导致点蚀坑内部氢离子浓度升高,溶液酸化,促使基体进一步溶解,点蚀坑发生扩展.
2.4 接头力学性能
图6为经过7天盐雾腐蚀接头、未腐蚀接头及母材的拉伸测试结果.未腐蚀接头抗拉强度为388.9 MPa ± 1.4 MPa,断后伸长率为20.5% ± 0.4%,分别达到母材的99%及94%. 经过7天盐雾腐蚀后接头抗拉强度降低到356.6 MPa ± 1.2 MPa,断后伸长率为18.1% ± 0.9%,盐雾腐蚀后接头强度降低了8.3%,断后伸长率下降了11.7%,盐雾腐蚀试验后接头仍保持较优的力学性能. 盐雾腐蚀环境造成焊缝表面出现点蚀坑,而富Cl−环境使基体金属进一步溶解,点蚀坑发生扩展,减少了接头有效承载面积,在承受载荷时其易成为薄弱位置,裂纹在点蚀坑位置产生,降低了接头承载能力.
3. 结论
(1) 实现了大尺寸间隙下机器人搅拌摩擦填丝焊,焊接过程与填料过程同时进行,提高了搅拌摩擦焊对接头间隙的容忍性,消除了焊缝减薄问题.
(2) 填充材料与基材实现了良好的冶金连接,经过剧烈塑性变形后,焊核区和填充材料发生动态再结晶,表现为细小的等轴晶粒.
(3) 未腐蚀接头抗拉强度达到388.9 MPa ± 1.4 MPa,断后伸长率为20.5% ± 0.4%,分别达到母材的99%及94%. 在腐蚀过程中焊核区和填充材料区耐腐蚀性能优于热影响区与母材,点蚀坑细小且均匀分布,7天盐雾腐蚀后接头保持优异的耐蚀性能.
-
表 1 工艺参数
Table 1 Process parameters
层厚
δ/mm同种路径搭接距离
d1 /mm骨架与轮廓间搭接距离
d2 /mm送丝速度
vf /(m·min−1)机器人移动速度
vr /(m·min−1)起弧延迟时间
ts /s熄弧延迟时间
te /s2 5.39 5 6 0.02 1.2 0.5 -
[1] 张金田, 王杏华, 王涛. 单道多层电弧增材制造成形控制理论分析[J]. 焊接学报, 2019, 40(12): 63 − 67. Zhang Jintian, Wang Xinghua, Wang Tao. Research on forming control for single-pass multi-layer of WAAM[J]. Transactions of the China Welding Institution, 2019, 40(12): 63 − 67.
[2] Ding D, Pan Z, Cuiuri D, et al. Automatic multi-direction slicing algorithms for wire based additive manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2016, 37: 139 − 150.
[3] Bethany K, Allan R, Graham B. An efficient triangle mesh slicing algorithm for all topologies in additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(3-4): 1023 − 1033. doi: 10.1007/s00170-020-06396-2
[4] 韩兴国, 宋小辉, 殷鸣, 等. 一种复杂曲面类增材制造零件分层截面生成算法[J]. 机械工程学报, 2019, 55(15): 88 − 98. doi: 10.3901/JME.2019.15.088 Hang Xinguo, Song Xiaohui, Yin Ming, et al. A layered section contour generation algorithm for additive manufacturing parts with complex surfaces[J]. Journal of Mechanical Engineering, 2019, 55(15): 88 − 98. doi: 10.3901/JME.2019.15.088
[5] 李鑫磊, 韩庆璘, 张广军. 基于曲面分层的大型螺旋桨GMA增材制造[J]. 焊接学报, 2022, 43(9): 20 − 24. Li Xinlei, Han Qinglin, Zhang Guangjun. GMA additive manufacturing of large propeller based on curved layer[J]. Transactions of the China Welding Institution, 2022, 43(9): 20 − 24.
[6] Hu Z, Qin X, Shao T, et al. Understanding and overcoming of abnormity at start and end of the weld bead in additive manufacturing with GMAW[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 2357 − 2368.
[7] 方学伟, 白浩, 姚云飞, 等. 冷金属过渡电弧增材制造多道搭接工艺研究[J]. 机械工程学报, 2020, 56(1): 141 − 147. doi: 10.3901/JME.2020.01.141 Fang Xuewei, Bai Hao, Yao Yunfei, et al. Research on multi-bead overlapping process of wire and arc additive manufacturing based on cold metal transfer[J]. Journal of Mechanical Engineering, 2020, 56(1): 141 − 147. doi: 10.3901/JME.2020.01.141
[8] Yang Y, Loh H T, Fuh J, et al. Equidistant path generation for improving scanning efficiency in layered manufacturing[J]. Rapid Prototyping Journal, 2002, 8(1): 30 − 37. doi: 10.1108/13552540210413284
[9] Rajan V T, Srinivasan V, Tarabanis K A. The optimal zigzag direction for filling a two-dimensional region[J]. Rapid Prototyping Journal, 2001, 7(5): 231 − 241. doi: 10.1108/13552540110410431
[10] Zhang J, Wang Q, Xiao G, et al. Filling path planning and polygon operations for wire arc additive manufacturing process[J]. Mathematical Problems in Engineering, 2021, 2021: 1 − 12.
[11] Ding D, Pan Z, Cuiuri D, et al. A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures[J]. Robotics and Computer-Integrated Manufacturing, 2015, 34: 8 − 19. doi: 10.1016/j.rcim.2015.01.003
[12] Ding D, Pan Z, Cuiuri D, et al. Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2016, 39: 32 − 42. doi: 10.1016/j.rcim.2015.12.004
[13] Florent M, Helen L, Ding J, et al. A modular path planning solution for Wire + Arc Additive Manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2019, 60: 1 − 11. doi: 10.1016/j.rcim.2019.05.009
[14] Liu N, Ren K, Zhang W, et al. An evolutional algorithm for automatic 2D layer segmentation in laser-aided additive manufacturing[J]. Additive Manufacturing, 2021, 47: 102342. doi: 10.1016/j.addma.2021.102342