Comparison of ultrasonic transverse and longitudinal wave porosity detection in additive manufacturing of AlSi10Mg
-
摘要: 随着增材制造在各个领域更为广泛和深入应用,越来越多的增材制造产品需要快速、无损的质量检测.孔隙率作为决定增材制造产品力学性能的重要指标,其检测更是重中之重. 通过调整激光功率、扫描速度改变体积能量密度,得到不同孔隙率的AlSi10Mg试样.分别采用超声横波、纵波对各试样进行检测,得到对应声速与衰减系数.结果表明,横、纵波声速均与孔隙率成反比关系,衰减系数与孔隙率均成正比关系.使用声速对孔隙率进行表征时,纵波声速绝对值变化更大,所以精度更佳.又由于纵波声速相较横波声速所对应的剪切模量变化更大,所以线性程度比横波提高22%;而使用衰减系数对孔隙率表征时,由于同频率横波波长更短,对极化方向更敏感,所以横波精度优于纵波,线性程度相较纵波提高13%.Abstract: With more extensive and in-depth application of additive manufacturing in various fields, non-destructive inspection are in growing needs in additive products for its fast and high quality inspection. Porosity is an important factor determining the mechanical properties of the additive products, so it is very important to characterize it during the inspection process. In this paper, the laser power and scanning speed are adjusted to change the volume energy density, and the AlSi10Mg specimens with different porosities are obtained. The ultrasonic transverse and longitudinal waves were used to test the specimens, and the corresponding sound velocity and attenuation coefficient were obtained. The results show that the transverse and longitudinal sound speeds are inversely proportional to the porosity size, and the attenuation coefficients are directly proportional to the porosity size. When using sound velocity to characterize the porosity, the absolute value of longitudinal sound velocity is more variable, so the accuracy is better. Because the shear modulus of longitudinal sound velocity changes more than that of transverse sound velocity, the linearity is 22% higher than that of transverse sound velocity. When the attenuation coefficient is used to characterize the porosity, the accuracy of transverse wave is better than that of longitudinal wave because transverse wave of the same frequency is shorter in wavelength, and is more sensitive to the direction of polarization, so the linearity is 13% higher than that of the longitudinal wave.
-
0. 序言
石油是工业发展中的“血脉”,为保证石油的运输工作,必须选择兼具高强度和耐腐蚀性能好的材料,尤其是耐化学腐蚀[1]、电化学腐蚀[2]和微生物腐蚀[3]. API5LB级钢承载能力强、强度高,广泛应用于石油工业,但极易受腐蚀,特别是在酸性环境中[4];Inconel 625镍基合金在表面形成Cr2O3致密的钝化膜,使其能够服役于高温氧化环境中,而在非氧化环境中,钼和镍的协同作用下具有抵抗点蚀和晶间腐蚀的能力[5].由此,镍/钢复合板具备优良的综合性能,能满足石油运输的使用要求.目前制备镍/钢复合板的方法有爆炸法[6]、轧制法[7]和堆焊法[8]等,其中爆炸法环境污染较大,轧制法时板材的几何形状受到限制[9-10];而堆焊法将镍合金材料直接堆焊沉积在高强钢内壁与石油直接接触,3 ~ 5 mm的镍基合金堆焊层厚度即可满足石油的耐腐蚀性能,成本低,效率高,具有无法比拟的优势[11-13].
关于Inconel 625镍基合金堆焊的研究主要集中在如何保证高沉积效率下实现镍/钢界面充分冶金结合,同时尽可能降低钢基材对镍基合金的稀释和控制镍/钢复合板的变形,前者要求热量较大,后者要求热量较小.在众多堆焊方法中以钨极引弧作为热源的方法具有热输入小,堆焊变形小,易实现自动化控制,满足热量小的要求,但其沉积速率低. Sing等人[14]通过增加焊接电流来提高沉积速率,但避免不了基材稀释率的提高;Singhal等人[15]采用二氧化碳气体保护焊堆焊,虽能在高沉积速率下获得较低稀释率的堆焊层,但结合界面剪切强度低.
单钨极热丝TIG堆焊,可通过钢丝绳作为导轨控制焊枪施焊位置,可以实现复杂工件的堆焊,但传统单钨极热丝TIG焊效率低,虽然增大电流强度[14]、添加助焊剂[16]、K-TIG(锁孔氩弧焊)[17]等方法能够增大熔深,提高沉积率,但稀释率难以控制. Kobayashi等人[19]1998年在传统的TIG焊枪内设置两个相互绝缘的钨极,并分别由两个独立的焊接电源供电,通过施加周期互补的脉冲电流,成功的焊接了体积高达18 000 m3的9%Ni的液化天然储气罐.基于此,提出了双钨极热丝TIG堆焊技术,实现输油管道的内壁堆焊. 双钨极分别由两台独立电源产生多种组合波形,既能保障在高沉积速率下熔池能量的需求,同时又能调节阳极斑点,避免管道内出现较大的弯曲与扭矩变形,这一技术不仅可以提高堆焊层沉积效率,实现熔池扁平化,熔池内还能形成类似于机械搅拌的涡流,同时双钨极热丝TIG堆焊相对于单钨极热丝TIG堆焊熔宽更大,焊枪步径加大,堆焊相同尺寸管道,焊接速度更快,焊接平均热输入更低,也有效的解决了单钨极热丝TIG在高热输入下高稀释率的问题[19-21].尤其是在堆焊Inconel 625镍基合金时,可以解决因液相流动性较差造成的小气孔和裂纹等问题.
文中基于最新研制的双钨极热丝TIG设备在高强钢管内壁堆焊两层Inconel 625镍基合金,分析新工艺下镍基合金堆焊层的微观组织构成、硬度及耐腐蚀性能. 另外,由于Inconel 625镍基合金焊接过程中Nb和Mo等元素出现严重偏析,凝固时Laves相和Nb次生相析出,使焊缝韧性、耐腐蚀性、疲劳和蠕变断裂强度显著下降[22-23]. 鉴于此对Inconel 625镍基合金堆焊层进行不同温度下的固溶处理,探索固溶处理工艺对堆焊层组织和性能的影响,最终旨在获得满足使用要求的输油管道.
1. 试验方法
1.1 试验材料
试验母材选用热轧无缝钢管,牌号为API 5L-46th PSL1 Gr.B,其外径和壁厚尺寸分别为323.9 mm和9.53 mm. 钢管内堆焊层所用是直径为1.2 mm的SFA/AWS A5.14,ERNiCrMo-3焊丝,其化学成分见表1.
表 1 Gr.B级钢和ERNiCrMo-3焊丝的化学成分(质量分数,%)Table 1. Chemical composition of Gr.B steel and ERNiCrMo-3 welding wire材料 C Si Mn Ni Cr Mo Fe Nb Al Ti Gr.B 0.190 0 0.250 0.400 0.04 0.01 0.003 98.770 0.004 — 0.002 ERNiCrMo-3 0.009 3 0.026 0.012 64.31 22.18 9.080 0.101 3.730 0.2 0.300 1.2 双钨极热丝TIG堆焊工艺
采用双钨极热丝TIG在12 m无缝钢管内水平轴向堆焊镍基合金,两把焊枪悬挂在钢丝绳上,两焊枪间距为450 mm,两个钨极的夹角为25° ~ 35°,两个钨极之间间距为0.8 ~ 1.2 mm,在堆焊过程中焊枪固定,双钨极形成共熔池,钢管旋转. 双钨极分别由一个5 A,10.2 V电源和450 A,28 V电源控制,两根ERNiCrMo-3焊丝分别由5 A,10 V和200 A,10 V的热丝电源进行预热. 堆焊过程中的焊接电压为10 ~ 14 V,焊接电流为30 ~ 50 A,焊接速度为1 000 ~ 1 400 mm/min,在钢管上堆焊两层,堆焊层厚度约为3 ~ 3.5 mm, 堆焊过程实物图和示意图如图1所示. 采用双钨极独立耦合两台焊接电源阳极,工件作为双电弧共熔池的公共阳极接驳点,构建双送丝导向装置与独立热丝电源组配系统,保护气体为氩气. 对堆焊后的镍合金/钢进行固溶处理,工艺分别为800 ℃ × 2 h和900 ℃ × 2 h,均进行水淬.
1.3 微观组织分析
线切割截取堆焊态下和固溶处理后的镍/钢试样,经过研磨、抛光后,使用10%(质量分数)草酸溶液在电压24 V下,电解10 ~ 12 s. 采用光学显微镜和型号为Zeiss Merlin Compact的电子显微镜对镍合金堆焊层进行微观组织和能谱点分析,对镍/钢界面进行线扫描,分析合金中主要元素在界面两侧的分布状态.
1.4 性能测试
采用型号为KB30S-FA的全自动维氏硬度计,依据国家标准GB/T 4340.1—2009《金属材料 维氏硬度试验 第1部分:试验方法》对焊态和热处理后的镍/钢试样进行显微硬度测量,测量过程中载荷为1 Pa,保载时间为15 s,以镍/钢界面为基准点向钢层及镍基合金层进行测试,每个点间隔0.5 mm,每个试样测量9个点.
对堆焊态和固溶处理后的镍/钢样品进行电化学腐蚀试验,沿着距离镍合金/钢界面层分别为0.5 mm,1 mm和1.5 mm处取样,试样尺寸分别为10 mm × 10 mm × 0.5 mm,10 mm × 10 mm × 1.0 mm和10 mm × 10 mm × 1.5mm. 试验采用三电极体系,铂与饱和甘汞电极分别为辅助电极和参比电极,待测试样为工作电极,用去离子水制备3.5%NaCl溶液作为腐蚀介质. 为了去除空气中形成的氧化膜,将试样置于腐蚀液中,在−1.2 V(SHE)的电位下极化180 s,随后浸泡1 h,直到开路电位(OCP)达到准稳态后测量极化曲线,以评估各样品的耐点蚀性能.将待测试样置于0.5 V(SHE)恒电位的钝化电位极化2 h,确保熔覆层表面生成稳定钝化膜. 采用X射线光电子能谱仪(thermo scientific nexsa)对钝化膜的元素成分进行半定量分析,使用标准峰(C1s,284.8 eV)对所有元素峰进行校正.
2. 结果与讨论
2.1 镍/钢堆焊复合板微观组织形貌分析
图2为焊态和热处理态Inconel 625堆焊层横截面的光学显微形貌,图3为图2中红色方框内相对应的镍基合金堆焊层放大. 图2(a)为焊态下镍/钢复合板的全貌,结合图3(a),可见镍基合金堆焊第一层沿着钢基体向上垂直生长,呈树枝状,且有一枝晶间距. 堆焊第二层晶粒尺寸大于堆焊第一层晶粒,这是由于第二层堆焊过程时对第一层顶部进行了重熔,细化了晶粒. 另外,第二层堆焊合金以第一层合金面为形核点进行凝固,晶粒生长方向开始变得杂乱,第二层堆焊合金层组织可以看出枝晶间距明显增大. 钢侧热影响区显微组织主要由魏氏组织组成,组织严重不均匀.
对镍/钢复合板进行800 ℃固溶处理后,钢侧热影响区中组织得到明显改善,主要由块状铁素体和粒状贝氏体组成,镍基合金堆焊第一层和第二层组织明显细化,如图2(b)和图3(b)所示. 对镍/钢复合板进行900 ℃固溶处理后,热影响区与基材组织趋于一致,主要由贝氏体组成,且贝氏体呈团状分布,如图2(c)和图3(c)所示.
图4为焊态和固溶处理镍基合金堆焊层的SEM形貌. 焊态(图4(a)和图4(d)),镍基合金堆焊层中枝晶状组织间含有较多的浅灰色团状物相1号和深灰色小块状颗粒2号;固溶处理温度为800 ℃时(图4(b)b和图4(e)),枝晶状组织之间物相(1号和2号)开始减少;当固溶处理温度为900 ℃时(图4(c)和图4(f)),枝晶状组织之间物相(1号和2号)进一步减少,同时有针状物相3号出现.对图中特征点进行能谱点分析结果见表2. 根据表2结果可以推测,1号为Laves相,即A2B型相:A可能为Ni,Cr和Fe元素,B可能为Nb,Mo和Ti元素,2号可能为碳化物沉淀相(如NbC),3号可能为δ相.
图 4 镍基合金堆焊层形貌及局部放大Figure 4. Morphologies and corresponding local magnified image in the nickel-based alloy surfacing layer . (a) as-welded state; (b) solution treatment at 800 ℃; (c) solution treatment at 900 ℃; (d) Fig. 4(a) magnified view; (e) Fig. 4(b) magnified view; (f) Fig. 4(c) magnified view表 2 镍基合金堆焊层中特征点能谱分析(质量分数,%)Table 2. Energy spectrum analysis results of characteristic points in nickel-based alloy surfacing layer特征点 Ni Cr Nb Fe Mo Ti 推测物相 1号 43.27 16.05 10.19 19.42 7.02 4.05 Laves 2号 13.38 3.28 75.42 7.80 — 0.12 NbC 3号 58.32 17.93 8.83 7.29 7.35 0.28 δ 625镍基合金中Nb和Mo主要起到提高强度和耐腐蚀性的作用,但这两种元素特别容易发生偏析. 在镍基合金堆焊层凝固时,首先从液相中析出镍基枝晶状奥氏体相,Nb,Mo和Ti等元素发生偏析并富集在枝晶间,与C形成碳化物沉淀相, 同时由Ni,Cr,Fe和Nb,Mo,Ti等元素形成Laves相(A2B型化合物)的析出均会导致镍基合金中出现贫Mo和Cr区域,从而降低其耐腐蚀性能. 对镍/钢复合板进行800 ℃固溶处理后,Nb和Mo等合金元素在镍基奥氏体的固溶度增加,使得Laves相和NbC减少. 同时,镍基合金堆焊层中析出次级镍基奥氏体γ″相从晶界附近处析出,这种物相位错密度大. 上述组织构成有利于镍基合金堆焊层强度、硬度和耐腐蚀性的提升. 进一步增加固溶温度至900 ℃,镍基合金中元素呈现过饱和态,次级镍基奥氏体γ″相增多,大量这种亚稳态γ″相会引起晶格畸变,从而促使δ相在紧密堆积面的堆积断层中成核,最终组织中有稳定的针状δ相产生,过多的针状δ相对性能有恶化作用.
2.2 镍/钢堆焊复合板硬度
图5是镍/钢堆焊复合板横截面硬度分布曲线.由图可知,焊态下从钢基材至镍基合金堆焊层硬度先下降后上升,在钢基材热影响区内硬度最低,这主要是因为焊态下钢基材中Fe元素向镍基合金堆焊层扩散,随后的快速冷却中热影响区魏氏体组织的形成而导致该区域的硬度值最低,这与Pu等人[24]结果一致.
对镍/钢复合板进行固溶处理后,钢基材硬度随温度的升高而升高,镍基合金堆焊层的硬度随温度的升高先上升后下降. 固溶处理工艺使元素扩散更加充分,热影响区内组织逐渐均匀化,故钢基材硬度随温度的上升而增加. 固溶温度为800 ℃时,镍基堆焊层中析出次级镍基奥氏体γ″相,位错密度逐渐增加,镍基合金堆焊层硬度上升. 然而,当固溶温度为900 ℃时,树枝晶间的γ″相转变为稳定δ相后,硬度反而开始下降.
2.3 堆焊层耐腐蚀性能
2.3.1 动电位极化曲线
为了探讨镍基堆焊层合金的耐腐蚀性能,在距离镍/钢界面0.5 mm,1.0 mm和1.5 mm处分别取样进行电化学腐蚀试验,不同位置试样的动电位极化曲线如图6所示. 由图6(a)和图6(b)可知,距离镍/钢界面层0.5 mm和1.0 mm时,固溶处理前后,镍基合金堆焊层的动极化曲线极为相似,耐腐蚀性能变化相差不大,均存在钝化区,钝化膜破碎后,耐腐蚀性能急剧下降. 用Cview软件对动电位极化曲线进行拟合得到自腐蚀电位与自腐蚀电流,结果见表3. 有研究表明腐蚀电位Ecorr反映着接头的腐蚀倾向,自腐蚀电流密度Icorr是相对较为常用且能够准确反映接头腐蚀速度的指标. Ecorr越大,Icorr越小,其耐腐蚀性能越好[25]. 根据表3结果可知,焊态下试样初始腐蚀电位最低,800 ℃固溶处理下试样初始腐蚀电位最高,自腐蚀电流密度最低,未见明显的点蚀电位.
表 3 不同试样腐蚀电位及腐蚀电流密度Table 3. Corrosion potential and corrosion current density of different specimens镍基合金堆焊层 腐蚀电位 Ecorr /V 腐蚀电流密度 Icorr /(10−7A·cm−2) 焊态-0.5 mm −0.969 13 4.592 3 800 ℃-0.5 mm −0.940 06 3.854 3 900 ℃-0.5 mm −0.955 25 4.334 3 焊态-1.0 mm −0.951 06 5.234 7 800 ℃-1.0 mm −0.898 00 4.091 3 900 ℃-1.0 mm −0.931 12 5.086 6 焊态-1.5mm −0.547 06 1.995 9 800 ℃-1.5mm −0.300 25 1.432 5 900 ℃-1.5mm −0.423 06 3.189 1 2.3.2 阻抗谱分析
图7是不同位置的试样在3.5%NaCl溶液中的Nyquist图. 容抗弧半径的大小,可以反映试样表面腐蚀发生的快慢,从图7中可以观察到,经过800 ℃固溶处理后的试样容抗弧半径的最大,耐腐蚀性能最好.
图8为不同试样在3.5%NaCl溶液中的Bode图,从图中可以看出,所有试样在中频最大相位角都接近90°,表明所有试样在3.5%NaCl溶液中都具有钝化行为. 采用ZView软件拟合数据,拟合数据见表4,等效电路图如图9所示,其中 Rs为溶液电阻,Rf 表示钝化膜的电荷转移电阻,CPE(Qf)为恒相元,n为CPE弥散指数. 指数范围在0≤n≤1之间,其中接近 -1,0 或 1 的 n 值分别表示电感、电阻和电容行为. 所有试样的n值都接近1,显示出电容行为.从表4中可以看到,800 ℃固溶处理下试样Rf值最高,而焊态的Rf值最低,表明800 ℃固溶处理下试样的耐蚀性能最好,这与极化曲线测试结果一致.
表 4 不同试样电化学阻抗谱拟合数据Table 4. Data of different samples were fitted by electrochemical impedance spectroscopy试样 溶液电阻Rs/(Ω·cm2) CPEQf/
(10−5Ω−1·cm2·Ω-n)CPE弥散
指数
n电荷转
移电阻
Rf/(Ω·cm2)焊态-0.5 mm 4.596 6.941 2 0.879 41 28 092 800 ℃-0.5 mm 4.486 9.485 9 0.833 45 38 204 900 ℃-0.5 mm 4.968 6.936 3 0.869 85 36 496 焊态-1.0 mm 4.876 8.434 8 0.854 74 35 972 800 ℃-1.0 mm 4.689 8.808 7 0.844 61 50 409 900 ℃-1.0 mm 4.25 7.419 3 0.872 43 42 254 焊态-1.5 mm 4.227 6.700 5 0.881 55 46 124 800 ℃-1.5 mm 10.57 4.207 5 0.899 31 80 719 900 ℃-1.5 mm 9.047 9.291 1 0.870 82 60 404 2.3.3 钝化膜XPS分析
考虑钢基材中Fe元素对镍基堆焊层耐腐蚀性能的影响,取距离镍/钢界面0.5 mm处的堆焊层试样表面进行XPS(X-ray photoelectron spectroscopy,XPS)分析,其焊态和不同固溶处理温度下元素总谱图如图10所示. 由图可知,热处理工艺不改变堆焊层表面钝化膜元素组成,信号峰较强的元素主要是C, O, Cr, Fe, Nb, Mo和 Ni, 说明钝化膜的主要成分是Cr, Nb,和Mo的氧化物,还有少量Fe的氧化物.
由于焊态和不同固溶处理温度的各元素XPS精细谱相差不大,选择800 ℃固溶处理镍基合金堆焊层的精细图谱进行详细分析. 图11是O1s,Cr2p,Fe2p,Ni2p,Mo3d和Nb3d所对应的精细图谱,由图11(a)可知,O1s精细图谱存在3个不同结合能的峰,分别是表面化学吸附氧OH−(531.50 eV)、表面晶格氧O2−(529.78 eV)以及C = O(533.06 eV)[26-27].由此可得,钝化膜主要成分由M·OH和M·O(M代表金属元素)组成;从图11(b)中Nb3d可知,钝化膜中Nb腐蚀产物主要是Nb2 + (202.50 eV)和Nb5 + (206.64 eV);图11(c)表示Cr主要存在3个特征峰,分别是金属态Cr(574.3 eV), Cr6 + (76.4 eV)和Cr3 + (577.3 eV) . 镍基合金熔覆层钝化膜中可能含有Cr,Cr2O3,Cr(OH)3和Cr(OH)3;图11(d)表示Fe2p也存在3个特征峰,Fe(706.7 eV),Fe2 + (709.3 eV)和Fe3 + (711.3 eV),这表明Fe2 + 和Fe3 + 是钝化膜中铁氧化物的主要种类,可能为FeO和Fe2O3;图11(e)表示在钝化膜表面均检测到金属Mo,Mo4 + 和Mo6 + ,Mo能使钝化膜更加致密牢固,从而有效提高堆焊层镍基合金的耐Cl−离子腐蚀性,是有益合金元素;图11(f)表示钝化膜中Ni2P存在一个特征峰,金属态Ni(852.8 eV),Ni是奥氏体形成元素,Ni能起到提高自腐蚀电位,增大钝化区的作用,所以能提高耐点蚀能力,能减缓镍基合金的腐蚀现象[28].
Inconel 625镍基合金表面的主要腐蚀方式是由低Nb和Mo区域与析出相之间引起的电位差而形成的电偶腐蚀[29]. 文中镍基合金堆焊层在NaCl溶液中电化学腐蚀时,Nb和Mo优先溶解, 在钝化膜的外层先形成M·OH,随着腐蚀时间的推移,M·OH脱水分解形成M·O,构成了钝化膜的内层. 另外,优先形成的Nb和Mo部分腐蚀产物进入腐蚀孔隙,阻碍NaCl电解液进一步向镍基合金中渗透,而电解液渗透进入镍基合金内部后,Cr和Fe元素比Ni元素又优先发生电解腐蚀, 底层最终主要是Ni单质. 由此,钝化膜内层主要为Cr,Fe,Nb和Mo的氧化物,外层主要为Cr,Fe,Nb和Mo的氢氧化物. 史鹏和Zhang等人[30-31]验证了上述分析结果.
3. 结论
(1) 双钨极热丝TIG堆焊技术可以在输油管道高强钢内壁制备成形好、变形小及无明显缺陷的625镍基合金堆焊层,第一层堆焊层晶粒尺寸小于第二层.
(2) 800 ℃和900 ℃固溶处理使镍/钢复合板中钢侧热影响区组织更加均匀统一. 从焊态到900 ℃固溶处理,镍基合金堆焊层组织中镍基奥氏体枝晶间Laves相和碳化物不断减少,最终有针状δ相产生.
(3)镍/钢堆焊复合板焊态组织中显微硬度呈现梯度分布特征,具体表现为镍基堆焊层高于钢基体,在焊接热循环的作用下钢材热影响区硬度最低,固溶处理提高了相应区域的硬度. 当固溶处理温度为800 ℃时,组织中有大量次级镍基奥氏体γ″相生成,此相位错密度较高,硬度值最大.
(4) 堆焊层越靠近基材,腐蚀性能越差. 相比于焊态和900 ℃固溶处理,800 ℃固溶处理时625镍基合金堆焊层耐腐蚀性能最佳. 经XPS分析,堆焊层表面钝化膜由两层构成,内层主要为Cr,Fe,Nb和Mo的氧化物,外层主要为Cr,Fe,Nb和Mo的氢氧化物.
-
表 1 增材制造工艺参数
Table 1 Additive manufacturing process parameters
试样编号 激光功率
P/W扫描速度
v/(mm·s−1)体积能量密度
QV/(J·mm−3)1 345 1936 33 2 345 1486 43 3 345 1205 53 4 345 1014 63 5 345 875 73 6 370 2076 33 7 370 1593 43 8 370 1300 53 9 370 1088 63 10 370 939 73 11 395 2217 33 12 395 1707 43 13 395 1385 53 14 395 1167 63 15 395 1002 73 表 2 排水法与超声扫描孔隙率数据对比
Table 2 Comparison of porosity data from drainage method and from ultrasonic scan
试样编号 孔隙率φ(%) 排水法 超声扫描 1 5.86 5.27 2 0.33 0.09 3 0.49 0.12 4 6.54 5.77 5 15.67 15.45 6 7.71 6.97 7 0.64 0.5 8 0.39 0.16 9 2.99 2.73 10 10.14 9.93 11 6.05 5.58 12 0.98 0.85 13 0.34 0.27 14 1.84 1.56 15 14.93 14.42 表 3 2.5 MHz纵波和5 MHz纵波、横波的声速与衰减系数
Table 3 Sound velocity and attenuation coefficients of 2.5 MHz longitudinal wave and 5 MHz longitudinal wave, transverse wave
激光
功率P/W体积能量密度
QV/(J·mm−3)试样
编号孔隙率
φ(%)2.5 MHz
纵波声速
VL/(m·s−1)2.5 MHz
纵波衰减系数
αL/(dB·mm−1)5 MHz
纵波声速
VL/(m·s−1)5 MHz
纵波衰减系数
αL/(dB·mm−1)5 MHz
横波声速
VS/(m·s−1)5 MHz
横波衰减系数
αS/(dB·mm−1)345 33 1 5.27 6 324.29 0.049 776 195 6 330.46 0.053 036 164 3239.29 0.202 074 581 43 2 0.09 6 381.00 0.029 240 008 6 345.49 0.034 238 231 3293.01 0.154 700 118 53 3 0.12 6 396.20 0.022 574 055 6 358.34 0.032 837 497 3311.03 0.155 682 368 63 4 5.77 6 325.28 0.037 216 855 6 330.83 0.046 598 099 3265.25 0.198 577 517 73 5 15.45 6 236.40 0.071 554 081 6 259.85 0.078 041 393 3184.24 0.292 398 494 370 33 6 6.97 6 286.55 0.060 941 607 6 275.22 0.072 220 331 3219.39 0.164 013 634 43 7 0.5 6 334.46 0.051 201 379 6 329.22 0.054 968 915 3240.99 0.109 146 431 53 8 0.16 6 338.23 0.049 036 687 6 347.62 0.055 778 072 3242.69 0.107 973 898 63 9 2.73 6 315.65 0.057 988 245 6 307.39 0.064 762 298 3225.49 0.135 846 893 73 10 9.93 6 273.83 0.071 332 259 6 248.35 0.088 635 582 3191.51 0.194 167 173 395 33 11 5.58 6 332.33 0.047 669 728 6 290.89 0.053 704 654 3256.09 0.149 474 507 43 12 0.85 6 359.45 0.038 608 989 6 329.96 0.040 345 026 3276.17 0.078 271 362 53 13 0.27 6 371.39 0.036 710 131 6 341.35 0.038 587 316 3292.19 0.056 573 002 63 14 1.56 6 353.08 0.045 824 802 6 314.89 0.049 587 282 3 269.92 0.098 829 717 73 15 14.42 6287.04 0.078 378 682 6 212.74 0.082 415 785 3 225.56 0.316 490 175 表 4 2.5 MHz纵波和5 MHz纵波、横波各组拟合优度
Table 4 Goodness of fit for each group of 2.5 MHz longitudinal wave and 5 MHz longitudinal wave, transverse wave
试样编号 2.5 MHz
纵波声速2.5 MHz
纵波衰减系数5 MHz
纵波声速5 MHz
纵波衰减系数5 MHz
横波声速5 MHz
横波衰减系数1组 ~ 5组(345 W) 0.984 9 0.997 4 0.967 8 0.999 8 0.995 3 0.999 7 6组 ~ 10组(370 W) 0.999 3 0.992 0 0.986 9 0.993 6 0.999 4 0.998 3 11组 ~ 15组(395 W) 0.975 9 0.988 0 0.977 0 0.990 9 0.982 2 0.998 8 -
[1] Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: A review[J]. Materials & Design, 2021, 209(12): 110008.
[2] Uriondo A, Esperon-Miguez M, Perinpanayagam S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(11): 2132 − 2147. doi: 10.1177/0954410014568797
[3] Jamróz W, Szafraniec J, Kurek M, et al. 3D printing in pharmaceutical and medical applications–recent achievements and challenges[J]. Pharmaceutical Research, 2018, 35(9): 176. doi: 10.1007/s11095-018-2454-x
[4] Salmi M. Additive manufacturing processes in medical applications[J]. Materials, 2021, 14(1): 191. doi: 10.3390/ma14010191
[5] Casalino G, Filippis L A C D, Ludovico A. A technical note on the mechanical and physical characterization of selective laser sintered sand for rapid casting[J]. Journal of Materials Processing Technology, 2005, 166(1): 1 − 8. doi: 10.1016/j.jmatprotec.2004.07.102
[6] Kang J, Shangguan H, Deng C, et al. Additive manufacturing-driven mold design for castings[J]. Additive Manufacturing, 2018, 22: 472 − 478. doi: 10.1016/j.addma.2018.04.037
[7] Wang D, Han H, Sa B, et al. A review and a statistical analysis of porosity in metals additively manufactured by laser powder bed fusion[J]. Opto-Electron Adv, 2022, 5(10): 210058 − 210061. doi: 10.29026/oea.2022.210058
[8] Gao W, Glorieux C, Kruger S E, et al. Investigation of the microstructure of cast iron by laser ultrasonic surface wave spectroscopy[J]. Materials Science & Engineering: A, 2001, 313(1): 170 − 179.
[9] Park S, Hong J, Ha T, et al. Deep learning-based ultrasonic testing to evaluate the porosity of additively manufactured parts with rough surfaces[J]. Metals, 2021, 11(2): 290. doi: 10.3390/met11020290
[10] Cerniglia D, Scafidi M, Pantano A, et al. Inspection of additive-manufactured layered components[J]. Ultrasonics, 2015, 62: 292 − 298. doi: 10.1016/j.ultras.2015.06.001
[11] Javadi Y, Mohseni E, Macleod C N, et al. Continuous monitoring of an intentionally-manufactured crack using an automated welding and in-process inspection system[J]. Materials & Design, 2020, 191: 108655.
[12] Honarvar F, Varvani-Farahani A. A review of ultrasonic testing applications in additive manufacturing: defect evaluation, material characterization, and process control[J]. Ultrasonics, 2020, 108: 106227. doi: 10.1016/j.ultras.2020.106227
[13] 奥妮,何子昂,吴圣川,等. 激光增材制造AlSi10Mg合金的力学性能研究进展[J]. 焊接学报, 2022, 43(9): 1 − 19. Ao Ni, He Ziang, Wu Shengchuan, et al. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. Transactions of the China Welding Institution, 2022, 43(9): 1 − 19.
[14] Simchi A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features[J]. Materials Science & Engineering: A, 2006, 428(1-2): 148 − 158.
[15] Sarpuen I H, Kilikaya M S. Mean grain size determination in marbles by ultrasonic first backwall echo height measurements[J]. NDT & E International, 2006, 39(1): 82 − 86.
[16] Du H, Turner J A. Ultrasonic attenuation in pearlitic steel[J]. Ultrasonics, 2014, 54(3): 882 − 887. doi: 10.1016/j.ultras.2013.10.017
[17] Li M, Zhou T, Song Y. Material grain size characterization method based on energy attenuation coefficient spectrμm and support vector regression[J]. Ultrasonics, 2016, 69: 1 − 10. doi: 10.1016/j.ultras.2016.03.004
[18] Hirsekorn S, Van Andel P W, Netzelmann U. Ultrasonic methods to detect and evaluated damage in steel[J]. Nondestructive Testing and Evaluation, 1998, 15(6): 373 − 393. doi: 10.1080/10589750008952880
[19] Tang S H, Wu S, Kobayashi M, et al. Effects of texture evolutions and point defects on ultrasonic waves under simple shear and pure shear[J]. International Journal of Solids and Structures, 2007, 44(3-4): 1277 − 1290. doi: 10.1016/j.ijsolstr.2006.06.014
[20] Pabst W, Uhlířová T, Gregorová E, et al. Young’s modulus and thermal conductivity of model materials with convex or concave pores–from analytical predictions to nμmerical results[J]. Journal of the European Ceramic Society, 2018, 38(7): 2694 − 2707. doi: 10.1016/j.jeurceramsoc.2018.01.040
[21] Kim C, Yin H, Shmatok A, et al. Ultrasonic nondestructive evaluation of laser powder bed fusion 316L stainless steel[J]. Additive Manufacturing, 2021, 38: 101800. doi: 10.1016/j.addma.2020.101800
[22] Tanner L E, Wuttig M. Workshop on first-order displacive phase transformations: Review and recommendations[J]. Materials Science & Engineering: A, 1990, 127(2): 137 − 144.
[23] Sol T, Hayun S, Noiman D, et al. Nondestructive ultrasonic evaluation of additively manufactured AlSi10Mg samples[J]. Additive Manufacturing, 2018, 22: 700 − 707. doi: 10.1016/j.addma.2018.06.016