高级检索

激光清洗时氟碳铝粉漆层表面粗糙度的分析及其对激光吸收的影响

朱明, 张豪, 石坤, 侯宵飞, 石玗

朱明, 张豪, 石坤, 侯宵飞, 石玗. 激光清洗时氟碳铝粉漆层表面粗糙度的分析及其对激光吸收的影响[J]. 焊接学报, 2024, 45(3): 43-53. DOI: 10.12073/j.hjxb.20230331002
引用本文: 朱明, 张豪, 石坤, 侯宵飞, 石玗. 激光清洗时氟碳铝粉漆层表面粗糙度的分析及其对激光吸收的影响[J]. 焊接学报, 2024, 45(3): 43-53. DOI: 10.12073/j.hjxb.20230331002
ZHU Ming, ZHANG Hao, SHI Kun, HOU Xiaofei, SHI Yu. Analysis of surface roughness of fluorocarbon aluminum powder coating during laser cleaning and its influence on laser absorption[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 43-53. DOI: 10.12073/j.hjxb.20230331002
Citation: ZHU Ming, ZHANG Hao, SHI Kun, HOU Xiaofei, SHI Yu. Analysis of surface roughness of fluorocarbon aluminum powder coating during laser cleaning and its influence on laser absorption[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 43-53. DOI: 10.12073/j.hjxb.20230331002

激光清洗时氟碳铝粉漆层表面粗糙度的分析及其对激光吸收的影响

基金项目: 国家自然科学基金资助项目(52065041);国家留学基金委课题;课题甘肃省教育厅“双一流”科研重点项目 ;兰州理工大学红柳优秀青年人才支持
详细信息
    作者简介:

    朱明,博士,副研究员,硕士生导师;主要研究方向为先进焊接方法及自动化,激光表面加工技术;Email: zhumings@yeah.net

  • 中图分类号: TG 456.7;TN 249

Analysis of surface roughness of fluorocarbon aluminum powder coating during laser cleaning and its influence on laser absorption

  • 摘要:

    激光清洗2024铝合金飞机蒙皮表面漆层过程中,粗糙表面的形成与演化会对漆层与激光的热交互作用及漆层去除机理产生较大的影响.1064 nm脉冲激光逐层除漆过程中,分析了漆层表面形貌与粗糙程度的变化,研究了粗糙表面的产生机理及其演化规律,并通过建立漆层粗糙表面等效分析模型计算分析了漆层粗糙表面对激光吸收率的影响规律. 结果表明,激光除漆过程中不同的去除机理作用后漆层均会出现粗糙表面,且粗糙表面的演化存在一定的规律;逐层除漆时,漆层粗糙表面对激光吸收率有明显增加作用,在激光作用7次后漆层粗糙表面对激光的吸收率增加了32.8%,如果采用固定的初始激光清洗工艺,会因吸收率增大导致铝合金基材产生损伤行为.

    Abstract:

    In the process of laser cleaning the paint layer on the surface of 2024 aluminum alloy aircraft skin, the formation and evolution of rough surfaces can significantly affect the thermal interaction between the paint layer and the laser, as well as the removal mechanism. This study analyzed the changes in surface morphology and roughness of the paint layer during the layer-by-layer removal process using a 1064 nm pulsed laser. It investigated the generation mechanism and evolution pattern of rough surfaces, and calculated the effect of the rough surface of the paint layer on the laser absorption rate during the layer-by-layer removal process by establishing an equivalent analysis model for the rough surface of the paint layer. The results show that, rough surfaces appear on the paint layer after different removal mechanisms during the laser paint removal process, and there is a certain pattern in the evolution of rough surfaces during the layer-by-layer laser paint removal process;during the laser layer-by-layer paint removal process, the rough surfaces significantly increase the laser absorption rate, with an increase of 32.8% in the laser absorption rate after 7 laser treatments. If a fixed initial laser cleaning process is used, the increased absorption rate will lead to damage to the aluminum alloy substrate.

  • 图  1   激光去除飞机蒙皮漆层的试验系统

    Figure  1.   Experimental system for laser removal of aircraft skin paint

    图  2   激光扫描路径示意图

    Figure  2.   Schematic diagram of the laser scanning path

    图  3   烧蚀去除机理除漆过程

    Figure  3.   Paint layer ablation removal process. (a) original surface of the paint layer; (b) paint layer boils and produce smoke; (c) boiling paint layer splashes outward; (d) rough surface of the area is formed

    图  4   烧蚀去除机理除漆后SEM图

    Figure  4.   SEM image of paint layer after ablation removal

    图  5   漆层烧蚀去除后的EDS分析

    Figure  5.   EDS analysis after ablation removal of paint layer. (a) original paint layer (spot 1); (b) splash product (spot 2); (c) laser ablation area (spot 3)

    图  6   漆层振动去除过程

    Figure  6.   Paint layer vibration removal process. (a) original surface of the paint layer; (b) paint layer begins to remove under the action of the laser; (c) paint layer cracks under thermal stress; (d) cracked paint layer splashes outward under the action of thermal stress

    图  7   振动去除机理除漆后宏观形貌

    Figure  7.   Macroscopic morphology of paint layer after vibration removal

    图  8   漆层震动去除后的EDS分析

    Figure  8.   EDS analysis after vibration removal of paint layer. (a) splash products(spot 2); (b) laser action area(spot 1)

    图  9   漆层三维形貌图

    Figure  9.   3D topography of paint layer. (a) original paint layer; (b) paint layer after laser action

    图  10   12次激光作用后的SEM与EDS图像

    Figure  10.   SEM and EDS images after 12 laser actions. (a) SEM image; (b) EDS image

    图  11   激光除漆过程表面粗糙度的算术平均高度变化规律

    Figure  11.   Variation regular of paint layer roughness during laser paint removal

    图  12   激光除漆过程表面粗糙度的算术平均高度变化规律

    Figure  12.   Variation regular of average roughness of paint layer during laser paint removal

    图  13   激光作用12次后漆层表面三维形貌

    Figure  13.   3D morphology of the paint layer surface after 12 laser actions

    图  14   漆层表面粗糙度对激光吸收的影响

    Figure  14.   Effect of surface roughness of paint layers on laser absorption

    图  15   损伤基材与原始基材表面的SEM与EDS图像

    Figure  15.   SEM and EDS images of damaged substrate and original substrate surface. (a) SEM images of substrate damage; (b) EDS analysis of Al element under substrate damage; (c) EDS analysis of O element under substrate damage; (d) SEM images of the original substrate surface; (e) EDS analysis of Al element on the original surface of the substrate; (f) EDS analysis of O elements on the original surface of substrate

    图  16   粗糙表面截面轮廓线等效图

    Figure  16.   Equivalent diagram of rough surface profile. (a) cross-sectional profile of the original rough surface; (b) cross-sectional profile equivalent process; (c) profile diagram after equivalent processing; (d) exactly equivalent contour line

    图  17   Ra等效计算值和试验值以及两者之间的标准误差

    Figure  17.   Ra equivalent calculated value and test value and the standard error between them

    图  18   激光在粗糙表面反射一次的路径

    Figure  18.   Laser path for a single reflection on a rough surface

    图  19   激光在粗糙表面反射一次和部分反射两次路径

    Figure  19.   Path of laser reflection once and partial reflection twice on a rough surface

    图  20   激光在粗糙表面反射两次路径

    Figure  20.   Laser path for two reflections on a rough surface

    图  21   激光在粗糙表面反射两次和部分反射三次路径

    Figure  21.   Laser path reflecting twice and partially reflecting three times on a rough surface

    图  22   激光在粗糙表面反射三次路径

    Figure  22.   Three times laser reflection on a rough surface

    图  23   激光在粗糙表面自陷路径

    Figure  23.   Laser self trapping path on rough surface

    图  24   激光作用次数和漆层吸收率的关系

    Figure  24.   Relationship between laser action times and paint absorption

    表  1   3种激光工艺参数

    Table  1   Three laser process parameters

    试验
    编号
    激光功率
    P/ W
    脉冲宽度
    d/ ns
    脉冲频率
    f/kHz
    扫描速度
    v/(mm·s−1)
    11630030500
    22030030500
    31030030500
    下载: 导出CSV
  • [1] 王祝堂. 铝材在国产大飞机上的应用[J]. 轻合金加工技术, 2016, 44(11): 1 − 8.

    Wang Zhutang. Application of aluminum materials on domestic large aircrafts[J]. Light Alloy Fabrication Technology, 2016, 44(11): 1 − 8.

    [2] 蒋一岚, 叶亚云, 周国瑞, 等. 飞机蒙皮的激光除漆技术研究[J]. 红外与激光工程, 2018, 47(12): 29 − 35.

    Jiang Yilan, Ye Yayun, Zhou Guorui, et al. Research on laser paint removing of aircraft surface[J]. Infrared and Laser Engineering, 2018, 47(12): 29 − 35.

    [3] 唐扬刚, 贺小帆, 刘文珽, 等. 飞机连接结构防护涂层老化损伤量化评估方法[J]. 航空学报, 2017, 38(1): 141 − 153.

    Tang Yanggang, He Xiaofan, Liu Wenting, et al. Quantitative method for evaluating aging damage of protective coatings of aircraft joint structures[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 141 − 153.

    [4]

    Wang F, Qian W, Huang H Q, et al. Effects of laser paint stripping on oxide film damage of 2024 aluminium alloy aircraft skin[J]. Optics Express, 2021, 29(22): 440283.

    [5]

    Ortiz P, Antunez V, Ortiz R, et al. Comparative study of pulsed laser cleaning applied to weathered marble surfaces[J]. Applied Surface Science, 2013, 283(14): 193 − 201.

    [6]

    Li F, Chen X, Lin W, et al. Nanosecond laser ablation of Al-Si coating on boron steel[J]. Surface and Coatings Technology, 2017, 319: 129 − 135. doi: 10.1016/j.surfcoat.2017.03.038

    [7]

    Li Z, Zhang D, Xuan S, et al. Removal mechanism of surface cleaning on TA15 titanium alloy using nanosecond pulsed laser[J]. Optics & Laser Technology, 2021, 139(1): 106998.

    [8]

    Liu H, Li J, Yang Y, et al. Automatic process parameters tuning and surface roughness estimation for laser cleaning[J]. IEEE Access, 2020, 8: 20904 − 20919. doi: 10.1109/ACCESS.2020.2970086

    [9]

    Seo Y, Son S, Lee D. A study of laser cleaning to remove by-products occurring after arc welding[J]. Materials Chemistry and Physics, 2022, 288: 126375. doi: 10.1016/j.matchemphys.2022.126375

    [10] 张成竹, 陈辉, 蔡创, 等. 激光清洗对SMA490BW钢接头表面应力及腐蚀的影响[J]. 焊接学报, 2020, 41(11): 89 − 96.

    Zhang Chengzhu, Chen Hui, Cai Chuang, et al. Effect of laser cleaning on surface stress and corrosion of SMA490BW steel welded joint[J]. Transactions of the China Welding Institution, 2020, 41(11): 89 − 96.

    [11]

    Ren Y, Wang L, et al. The surface properties of an aviation aluminum alloy after laser cleaning[J]. Coatings, 2022, 12: 273. doi: 10.3390/coatings12020273

    [12] 江茫, 徐进军, 刘珂嘉, 等. 飞机蒙皮激光除漆技术工程化应用的现状与展望(特邀)[J]. 红外与激光工程, 2023, 52(2): 61 − 74.

    Jiang Mang, Xu Jinjun, Liu Kejia, et al. Current status and prospect of engineering application of laser paint removal technology for aircraft skin (invited)[J]. Infrared and Laser Engineering, 2023, 52(2): 61 − 74.

    [13] 徐进军, 江茫, 任延岫, 等. 激光除漆技术及其在飞机蒙皮除漆工程化应用的研究进展[J]. 光学技术, 2023, 49(1): 34 − 45.

    Xu Jinjun, Jiang Mang, Ren Yanxiu, et al. Research progress of laser paint stripping technology and its engineering application in aircraft skin paint removal[J]. Optical Technique, 2023, 49(1): 34 − 45.

    [14] 雷正龙, 孙浩然, 田泽, 等. 不同时间尺度的激光对铝合金表面油漆层清洗质量的影响[J]. 中国激光, 2021, 48(6): 59 − 68.

    Lei Zhenglong, Sun Haoran, Tian Ze, et al. Effect of laser at different time scales on cleaning quality of paint on Al alloy surfaces[J]. Chinese Journal of Lasers, 2021, 48(6): 59 − 68.

    [15]

    Jasim H, Demir A, Previtali B, et al. Process development and monitoring in stripping of a highly transparent polymeric paint with ns-pulsed fiber laser[J]. Optics & Laser Technology, 2017, 93: 60 − 66.

    [16]

    Zhu G, Wang S, Cheng W, et al. Corrosion and wear performance of aircraft skin after laser cleaning[J]. Optics & Laser Technology, 2020, 132(8): 106475.

    [17]

    Madhukar Y K, Mullick S, Nath A K. Development of a water-jet assisted laser paint removal process[J]. Applied Surface Science, 2013, 286: 192 − 205. doi: 10.1016/j.apsusc.2013.09.046

    [18]

    Miotello A, Kelly R. Critical assessment of thermal models for laser sputtering at high fluences[J]. Applied Physics Letters, 1995, 67(24): 3535 − 3537.

    [19]

    Madhukar Y K, Mullick S, Shukla D K, et al. Effect of laser operating mode in paint removal with a fiber laser[J]. Applied Surface Science, 2013, 264: 892 − 901. doi: 10.1016/j.apsusc.2012.10.193

    [20] 朱映瑞. 铝合金基体表面漆层激光清除机理及工艺[D]. 兰州: 兰州理工大学, 2021.

    Zhu Yingrui. Mechanism and technology of laser removal of paint layer on Al alloy matrix surface[D]. Lanzhou: Lanzhou University of Technology, 2021.

    [21]

    Rhodes B T, Quintiere J G. Burning rate and flame heat flux for PMMA in a cone calorimeter[J]. Fire Safety Journal, 1996, 26(3): 221 − 240. doi: 10.1016/S0379-7112(96)00025-2

    [22]

    Staggs J. The heat of gasification of polymers[J]. Fire Safety Journal, 2004, 39(8): 711 − 720.

    [23]

    Ze T, Lei Z, Xi C, et al. Nanosecond pulsed fiber laser cleaning of natural marine micro-biofoulings from the surface of aluminum alloy[J]. Journal of Cleaner Production, 2019, 244: 1 − 15.

图(24)  /  表(1)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  8
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-30
  • 网络出版日期:  2023-12-26
  • 刊出日期:  2024-03-24

目录

    /

    返回文章
    返回