Identification method of GTAW welding penetration state based on improved CeiT
-
摘要:
针对熔池信息与背景相似度高、噪声多、预测实时性差、识别精度低等问题,提出了基于改进CeiT网络模型的GTAW焊接熔透状态识别方法.首先通过MobileNetV3对Image-to-Tokens模块进行轻量化改进,提升预测的实时性能;其次设计DGCA模块改进LeFF模块来增强特征间的远程依赖关系、丰富类标记中所包含的分类信息;最后将LeFF模块中的底层特征和高层语义特征进行融合,提高模型对熔池特征的表示能力.仿真结果表明,与MobileNetV3,ResNet50,ShuffleNetV2,DeiT和CeiT模型相比,所提出的模型获得了更高的准确率和较快的检测速度.
Abstract:Aiming at the problems of high similarity between melt pool information and background, much noise, poor real-time prediction and low recognition accuracy, a GTAW welding fusion state recognition method based on improved CeiT network model is proposed. First, the Image-to-Tokens module is lightened and improved by MobileNetV3 to enhance the real-time performance of prediction; second, the DGCA module is designed to improve the LeFF module to enhance the remote dependencies among features and enrich the categorical information contained in the class labels; and lastly, the fusion of the underlying features and the high-level semantic features in the LeFF module improves the model's ability to represent the features of the melt pool. Simulation experiments show that the proposed model obtains higher accuracy and faster detection speed compared with MobileNetV3, ResNet50, ShuffleNetV2, DeiT, and CeiT models.
-
Keywords:
- image processing /
- melt pool /
- penetration state /
- CeiT network /
- gas tungsten arc welding
-
-
表 1 MobileNetV3网络参数
Table 1 MobileNetV3 network parameters
序号号 输入层 操作 步长 exp size #out SE 激活函数 1 2242 × 3 Conv2d 2 — 16 — h-swish 2 1122 × 16 FMCbneck,3 × 3 1 16 16 — ReLU 3 1122 × 16 bneck,3 × 3 2 64 24 — ReLU 4 562 × 24 FMCbneck,3 × 3 1 72 24 — ReLU 5 562 × 24 bneck,3 × 3 2 72 40 — ReLU 6 282 × 40 FMCbneck,3 × 3 1 120 40 — ReLU 7 282 × 40 FMCbneck,3 × 3 1 120 40 — ReLU 8 282 × 40 bneck,3 × 3 2 240 80 — h-swish 9 142 × 80 FMCbneck,5 × 5 1 200 80 √ h-swish 10 142 × 80 FMCbneck,5 × 5 1 184 80 √ h-swish 11 142 × 80 FMCbneck,5 × 5 1 184 80 √ h-swish 12 142 × 80 FMCbneck,5 × 5 1 480 112 √ h-swish 表 2 扩充后各数据集数量(张)
Table 2 Number of each data set after expansion
数据集 未熔透 熔透 烧穿 总和 训练集 5899 6053 5263 17215 验证集 738 757 658 2153 测试集 738 757 658 2153 总和 7375 7567 6579 21521 表 3 未数据增强试验结果
Table 3 No data enhancement test results
熔透类别 未熔透 正常熔透 烧穿 未熔透 82.5 12.5 5.0 正常熔透 3.0 96.0 1.0 烧穿 15.0 5.0 80 注:12.5表示未熔透状态的数据被预测为正常熔透的概率. 表 4 数据增强试验结果
Table 4 Data enhancement test results
熔透类别 未熔透 正常熔透 烧穿 未熔透 96.5 2.0 1.5 正常熔透 2.5 96.5 1.0 烧穿 1.0 2.0 97 表 5 消融试验结果
Table 5 Ablation test results
方案 I2T模块改进 LeFF模块改进 精确率 召回率 F1分数 准确率 训练时间
t/hM3 BNSA DG FI C0 C1 C2 C0 C1 C2 C0 C1 C2 C0 C1 C2 1 — — — — 85.1 86.9 85.3 80.6 81.3 80.0 84.6 87.3 84.5 87.5 87.9 86.8 4.07 2 Π — — — 81.2 83.7 81.9 74.7 80.7 79.2 81.1 83.8 80.9 82.1 84.3 83.5 3.23 3 Π Π — — 91.2 92.3 92.0 87.8 88.8 88.6 92.5 93.3 92.9 90.3 93.8 91.4 3.58 4 — — Π — 90.6 91.6 91.4 87.4 89.0 86.7 90.6 92.4 91.0 90.8 92.4 91.3 4.94 5 — — Π Π 91.3 92.5 92.1 87.7 89.5 87.6 91.7 91.6 92.2 91.7 92.6 92.4 5.16 6 Π Π Π Π 94.6 95.4 94.9 91.0 92.7 90.7 94.3 95.5 94.3 95.9 96.0 95.8 3.76 表 6 不同模型试验结果
Table 6 Test results of different models
模型 精确率 召回率 F1 分数 准确率 训练时间t/h 模型内存占用量 δ/MB 识别单个样本平均时间t'/s MobileNetV3 82.2 80.1 81.3 85.1 3.24 17.6 0.16 ResNet50 90.4 89.3 90.0 94.3 6.18 179 0.78 ShuffleNetV2 85.1 83.5 84.8 90.2 3.04 9.85 0.11 DeiT 75.5 73.3 74.2 80.3 3.27 35.8 0.35 tttCeiT 82.9 80.7 81.0 87.8 4.07 44.8 0.47 Improved-CeiT 92.7 90.2 91.6 95.4 3.76 27.7 0.24 -
[1] Wang Y M, Han J, Lu J, et al. TIG stainless steel molten pool contour detection and weld width prediction based on res-seg[J]. Metals-Open Access Metallurgy Journal, 2020, 10(11): 1495.
[2] Jiao W, Wang Q, Cheng Y, et al. Prediction of weld penetration using dynamic weld pool arc images[J]. Welding Journal, 2020, 99(11): 295s − 302s. doi: 10.29391/2020.99.027
[3] Kim H, Nam K, Oh S, et al. Deep-learning-based real-time monitoring of full-penetration laser keyhole welding by using the synchronized coaxial observation method[J]. Journal of Manufacturing Processes, 2021, 68(8): 1018 − 1030.
[4] Wu J Z, Shi J W, Gao Y F, et al. Penetration recognition in GTAW welding based on time and spectrum images of arc sound using deep learning method[J]. Metals, 2022, 12(9): 1549. doi: 10.3390/met12091549
[5] Ma G H, Yu L S, Yuan H T, et al. A vision-based method for lap weld defects monitoring of galvanized steel sheets using convolutional neural network[J]. Journal of Manufacturing Processes, 2021, 64: 130 − 139. doi: 10.1016/j.jmapro.2020.12.067
[6] Chang B X, Huang J Y. Discrimination of molten pool penetration based on genetic algorithm optimization of BP neural network[J]. Journal of Physics Conference Series, 2020, 1437: 012110. doi: 10.1088/1742-6596/1437/1/012110
[7] 陈宸, 周方正, 李成龙, 等. 融合空间和通道特征的等离子弧焊熔池熔透状态预测方法[J]. 焊接学报, 2023, 44(4): 30 − 38. doi: 10.12073/j.hjxb.20220516001 Chen Chen, Zhou Fangzheng, Li Chenglong, et al. Prediction method of plasma arc welding molten pool melting state based on spatial and channel characteristics[J]. Transactions of the China Welding Institution, 2023, 44(4): 30 − 38. doi: 10.12073/j.hjxb.20220516001
[8] 王颖, 高胜, 吴立明. 基于胶囊网络的TIG熔透预测[J]. 焊接, 2023(4): 15 − 20,28. doi: 10.12073/j.hj.20220425003 Wang Ying, Gao Sheng, Wu Liming. TIG penetration prediction based on capsule network[J]. Welding & Joining, 2023(4): 15 − 20,28. doi: 10.12073/j.hj.20220425003
[9] Gao Y F, Wang Q S, Xiao J H, et al. Weld penetration identification with deep learning method based on auditory spectrum images of arc sounds[J]. Welding in the World, 2022, 66(12): 2509 − 2520. doi: 10.1007/s40194-022-01373-7
[10] Yu R W, He H Y, Han J, et al. Monitoring of back bead penetration based on temperature sensing and deep learning[J]. Measurement, 2022, 188. DOI: 10.1016/J.MEASUREMENT.2021.110410.
[11] 段明瑞. 基于深度学习的乏燃料池不锈钢GTAW焊接质量在线监测[D]. 哈尔滨: 哈尔滨工业大学, 2021. Duan Mingrui. On-line monitoring of welding quality of stainless steel GTAW in spent fuel pool based on deep learning [D]. Harbin : Harbin Institute of Technology, 2021.
[12] Liu S K , Wu D, Luo Z Y , et al. Measurement of pulsed laser welding penetration based on keyhole dynamics and deep learning approach[J]. Measurement, 2022, 199. DOI:10.1016/J. MEASUREMENT.2022.111579.
[13] Nomura K, Fukushima K, Matsumura T, et al. Burn-through prediction and weld depth estimation by deep learning model monitoring the molten pool in gas metal arc welding with gap fluctuation[J]. Journal of Manufacturing Processes, 2020. DOI: 10.1016/j.jmapro.2020.10.019.
[14] Xia C Y, Pan Z X, Fei Z Y, et al. Vision based defects detection for Keyhole TIG welding using deep learning with visual explanation[J]. Journal of Manufacturing Processes, 2020, 56(8): 845 − 855.
[15] 刘天元, 鲍劲松, 汪俊亮, 等. 融合时序信息的激光焊接熔透状态识别方法[J]. 中国激光, 2021, 48(6): 228 − 238. Liu Tianyuan, Bao Jinsong, Wang Junliang, et al. Laser welding penetration state recognition method fused with timing information[J]. Chinese Journal of Lasers, 2021, 48(6): 228 − 238.
[16] 卢振洋, 宫兆辉, 闫志鸿, 等. 基于深度学习的TIG焊背部熔池检测和熔宽提取[J]. 北京工业大学学报, 2020, 46(9): 988 − 996. doi: 10.11936/bjutxb2018110030 Lu Zhenyang, Gong Zhaohui, Yan Zhihong, et al. Deep learning based detection and width extraction of back molten pool in TIG welding[J]. Journal of Beijing University of Technology, 2020, 46(9): 988 − 996. doi: 10.11936/bjutxb2018110030
[17] Wang Z M, Li L Y, Chen H Y, et al. Recognition of GTAW weld penetration based on the lightweight model and transfer learning[J]. Welding in the World, 2022, 67(1): 251 − 264.
[18] Li C, Wang Q, Jiao W, et al. Deep learning-based detection of penetration from weld pool reflection images[J]. Welding Journal, 2020, 99(9): 239s − 245s. doi: 10.29391/2020.99.022
[19] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 10012 − 10022.
[20] Liang S J, Yu M X, Lu W S, et al. A lightweight vision transformer with symmetric modules for vision tasks[J]. Intelligent Data Analysis, 2023, 27(6): 1741 − 1757. doi: 10.3233/IDA-227205
[21] Yuan K, Guo S, Liu Z, et al. Incorporating convolution designs into visual transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 559 − 568.
[22] Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
-
期刊类型引用(12)
1. 邹阳,魏巍,范悦,王泽震,王强,赵亮. 铝合金搅拌摩擦焊工艺研究进展. 热加工工艺. 2024(03): 7-13 . 百度学术
2. 陈平. 2系铝合金的搅拌摩擦焊接接头微观组织与力学性能研究. 北京印刷学院学报. 2024(03): 32-37 . 百度学术
3. 王浡婳,张立杰. 铝合金搅拌摩擦焊接头微观组织和力学性能分析. 精密成形工程. 2023(01): 94-100 . 百度学术
4. 许辉,刘宽,徐耀钟,于文凯,刘婷,王笑含,徐雪华. 2A14铝合金FSW焊缝背部线状缺陷返修工艺. 电焊机. 2023(03): 117-123 . 百度学术
5. 马领航,李波,赵彦广,宋建岭,高世康,李雨,许子彦,周利. 火箭贮箱焊接缺陷修复技术研究现状. 电焊机. 2023(03): 31-45 . 百度学术
6. 李晓华,齐影,郑瑞娟,武媛,祝弘滨,崔雷. QT400球墨铸铁摩擦塞焊接头的微观组织和力学性能研究. 热加工工艺. 2023(05): 141-144 . 百度学术
7. 鲁克锋,殷凤仕,王文宇,滕涛,樊世冲,刘亚凡,王鸿琪,朱建,任智强. 铝合金搅拌摩擦焊接头缺陷及焊件结构问题控制策略的研究进展. 表面技术. 2023(07): 55-79 . 百度学术
8. 丁清伟,汪春能,眭怀明,赵引红,陈冬梅. 铝合金机匣预埋管处渗漏机理分析及解决措施. 铸造技术. 2023(09): 873-876 . 百度学术
9. 李德福,王希靖. 6082铝合金摩擦塞补焊接头焊核区晶体特征. 兰州理工大学学报. 2022(03): 7-12 . 百度学术
10. 高彦军,刘西伟,刘旭升,邵震,崔雷. 2060-T8铝锂合金顶锻式摩擦塞补焊接头组织性能研究. 电焊机. 2022(07): 69-75+99 . 百度学术
11. 赵慧慧,高焓,胡蓝,董吉义,尹玉环,崔雷. 2219铝合金薄板拉拔式摩擦塞焊工艺及力学性能优化. 焊接. 2021(06): 48-55+64 . 百度学术
12. 胡永鹅,龙琼,韩兴科,何波,王尧,杨秀芳. 铝合金材料焊接方法研究进展. 贵州农机化. 2020(03): 15-19 . 百度学术
其他类型引用(7)