高级检索

基于PTA工艺的高氮钢熔滴过渡特性

程中光, 章晓勇, 贾冬生, 王克鸿, 王敬, 孙志磊

程中光, 章晓勇, 贾冬生, 王克鸿, 王敬, 孙志磊. 基于PTA工艺的高氮钢熔滴过渡特性[J]. 焊接学报, 2024, 45(5): 56-63. DOI: 10.12073/j.hjxb.20230314002
引用本文: 程中光, 章晓勇, 贾冬生, 王克鸿, 王敬, 孙志磊. 基于PTA工艺的高氮钢熔滴过渡特性[J]. 焊接学报, 2024, 45(5): 56-63. DOI: 10.12073/j.hjxb.20230314002
CHENG Zhongguang, ZHANG Xiaoyong, JIA Dongsheng, WANG Kehong, WANG Jing, SUN Zhilei. Transformation characteristics of high-nitrogen steel droplets based on PTA process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 56-63. DOI: 10.12073/j.hjxb.20230314002
Citation: CHENG Zhongguang, ZHANG Xiaoyong, JIA Dongsheng, WANG Kehong, WANG Jing, SUN Zhilei. Transformation characteristics of high-nitrogen steel droplets based on PTA process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 56-63. DOI: 10.12073/j.hjxb.20230314002

基于PTA工艺的高氮钢熔滴过渡特性

基金项目: 国家自然科学基金资助项目 (52305381);江苏省自然科学基金资助项目(BK20210351);特种车辆设计制造集成技术全国重点试验室项目(GZ2022KF010)
详细信息
    作者简介:

    程中光,硕士,主要研究方向为电弧增材工艺、性能、表征;Email: zgcheng0215@njust.edu.cn

    通讯作者:

    章晓勇,博士,副研究员;Email: xiaoyong.zhang@njust.edu.cn

  • 中图分类号: TG 403;TG 406

Transformation characteristics of high-nitrogen steel droplets based on PTA process

  • 摘要:

    丝材 + 电弧增材制造(wire and arc additive manufacturing, WAAM)适用于一体化成形大型复杂结构组件,在保证高氮钢增材结构件性能的同时,进一步提升高氮钢丝材的沉积速率,需要对不同直径高氮钢丝材的等离子弧增材工艺特性进行研究. 通过设计不同的送丝高度和送丝速度对高氮钢增材过程中的飞溅行为,及焊道N元素含量的变化进行研究,分析等离子弧增材制造中HNS6-N5高氮钢丝材的熔化特性和飞溅过程. 结果表明,送丝速度和送丝高度决定了高氮钢熔滴的过渡模式,也影响了焊道成形与工艺稳定性. 在相同的热输入下,随着送丝速度的减小,熔滴的飞溅行为更加剧烈,同时焊缝中的N元素含量呈现下降趋势,随着送丝速度的增加,焊缝中的N元素含量逐渐增加,综合调节丝材直径、送丝速度与送丝高度可以获得过程稳定、熔滴过渡飞溅、焊缝氮含量高、熔覆效率高的增材效果.

    Abstract:

    Wire and arc additive manufacturing (WAAM) using high-nitrogen steel is suitable for the integrated forming of large and complex structural components. In order to improve the deposition rate of high-nitrogen steel wire while ensuring the performance of additively manufactured components, it is necessary to study the plasma arc additive manufacturing characteristics of different diameters of high-nitrogen steel wire. The melting characteristics and spatter process of HNS6-N5 high-nitrogen steel wire in plasma arc additive manufacturing were analyzed. The study investigated the spatter behavior and N element content in weld metal during the additive manufacturing of high-nitrogen steel by designing different wire feed heights and feed speeds. The results show that the wire feed speed and height determine the transitional mode of high-nitrogen steel droplets and also affect the weld bead formation and process stability. Under the same heat input, decreasing the wire feed speed results in more intense spatter behavior of the molten droplets, while the N element content in the weld bead decreases. Increasing the wire feed speed gradually increases the N element content in the weld bead. By comprehensively adjusting the wire diameter, feed speed, and feed height, a stable process with low spatter, high nitrogen content in the weld bead, and high deposition efficiency can be achieved.

  • 图  1   等离子弧增材系统示意图

    Figure  1.   Schematic diagram of plasma arc additive system

    图  2   直径1.2 mm丝材在不同送丝速度下的熔滴过渡

    Figure  2.   Droplet transitions of the ϕ 1.2 mm wire under different wire feed speeds. (a) 3.1 m/min; (b) 2.5 m/min

    图  3   直径1.2 mm高氮钢丝材在不同送丝高度与送丝速度下的沉积过程

    Figure  3.   Deposition process of the ϕ 1.2 mm wire under different wire feed heights and speeds. (a) 2.0 m/min; (b) 2.5 m/min; (c) 3.0 m/min

    图  4   直径1.6 mm高氮钢丝在不同送丝高度与速度下的沉积过程

    Figure  4.   Deposition process of the ϕ 1.6mm wire under different wire feed heights and speeds. (a) 1.1 m/min; (b) 1.4 m/min; (c) 1.7 m/min

    图  5   直径1.6mm高氮钢焊丝在不同送丝速度下的等离子弧焊道

    Figure  5.   Plasma arc welding passes under different wire feed speeds with the ϕ1.6 mm wire. (a) 1.1 m/min; (b) 1.4 m/min; (c) 1.7 m/min

    图  6   直径2.0 mm高氮钢丝在不同送丝高度与速度下的沉积过程

    Figure  6.   Deposition process of the ϕ2.0 mm wire under different wire feed heights and speeds. (a) 0.7 m/min; (b) 0.9 m/min; (c) 1.1 m/min

    图  7   直径2.0 mm高氮钢焊丝等离子弧焊道

    Figure  7.   Plasma arc welding passes under different wire feed speeds with the ϕ2.0 mm wire. (a) 0.7 m/min; (b) 0.9 m/min; (c) 1.1 m/min

    图  8   高氮钢增材过程中熔滴爆破和飞溅过程

    Figure  8.   Droplet blasting and sputtering during the deposition process

    图  9   飞溅产生时的送丝高度

    Figure  9.   Wire feed heights at the time of the spattering generation

    图  10   2.0 mm丝径所得焊缝氮含量与送丝高度和送丝速度之间的关系

    Figure  10.   Effects of the wire feeding position and speed on the nitrogen content with the ϕ2.0 mm wire. (a) WFS = 0.9 m/min; (b) different wire feeding speeds

    图  11   送丝速度2.0,2.2 m/min时的沉积过程

    Figure  11.   Deposition processes under different wire feed speeds. (a) 2.0 m/min; (b) 2.2 m/min

    图  12   丝材直径和焊接电流对最大送丝速度的影响

    Figure  12.   Effects of the wire diameter and welding current on the maximum wire feed speed

    图  13   丝材直径和焊接电流对沉积速率的影响

    Figure  13.   Effects of wire diameter and welding current on the deposition rate

    表  1   焊丝和基板化学成分表(质量分数,%)

    Table  1   Chemical compositions of the substrate and wire

    材料CMnCrSiNiMoNPS
    基板≤0. 08≤2. 019. 0≤1. 09. 0≤0. 035≤0. 03
    焊丝0.0276.8521.035.372.380.580.0110.001
    下载: 导出CSV

    表  2   焊接工艺参数

    Table  2   Welding process paraments

    焊接速度
    v/(mm.s−1)
    焊道长度
    L/mm
    离子气流量
    q1/(L·min−1)
    保护气流量
    q2/(L·min−1)
    距基板高度
    h/mm
    3.51001.2198
    下载: 导出CSV
  • [1]

    Masumura T, Nakada N, Tsuchiyama T, et al. The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels[J]. Acta Materialia, 2015, 84: 330 − 338. doi: 10.1016/j.actamat.2014.10.041

    [2]

    Zhang X, Zhou Q, Wang K, et al. Study on microstructure and tensile properties of high nitrogen Cr-Mn steel processed by CMT wire and arc additive manufacturing [J]. Materials & Design, 2019, 166: 107611.

    [3]

    Stein G, Hucklenbroich I. Manufacturing and applications of high nitrogen steels[J]. Materials and Manufacturing Processes, 2004, 19(1): 7 − 17. doi: 10.1081/AMP-120027494

    [4]

    Talha M, Behera C K, Sinha O P. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications[J]. Materials Science & Engineering C, 2013, 33(7): 3563 − 3575.

    [5] 王星星, 田家豪, 李帅, 等. 高氮钢连接技术研究进展[J]. 焊接学报, 2023, 44(9): 118 − 128. doi: 10.12073/j.hjxb.20221025001

    Wang Xingxing, Tian Jiahao, Li Shuai, et al. Research progress on advanced joining technology of high-nitrogen steel[J]. Transactions of the China Welding Institution, 2023, 44(9): 118 − 128. doi: 10.12073/j.hjxb.20221025001

    [6]

    Anil Kumar V, Gupta R K, Karthikeyan M K, et al. Development of high nitrogen stainless steel for cryogenic applications[J]. Materials Science Forum, 2015, 830: 23 − 26. doi: 10.4028/www.scientific.net/MSF.830-831.23

    [7]

    Li S, Zhang C, Lu J, et al. A review of progress on high nitrogen austenitic stainless-steel research[J]. Materials Express, 2021, 11(12): 1901 − 1925. doi: 10.1166/mex.2021.2109

    [8]

    Park W I, Jung S M, Sasaki Y. Fabrication of ultra high nitrogen austenitic stainless steel by NH3 solution nitriding[J]. ISIJ International, 2010, 50(11): 1546 − 51. doi: 10.2355/isijinternational.50.1546

    [9]

    Qi M, Ren S, Chen J, et al. Research progress on high nitrogen stainless steel prepared by powder metallurgy technology[J]. Powder Metallurgy Technology, 2017, 35(4): 299 − 303.

    [10]

    Astafurov S, Astafurova E, Reunova K, et al. Electron-beam additive manufacturing of high-nitrogen steel: Microstructure and tensile properties[J]. Materials Science & Engineering:A, 2021, 826: 141951. doi: 10.1016/j.msea.2021.141951

    [11]

    Yang D, Huang Y, Fan J, et al. Effect of N2 content in shielding gas on formation quality and microstructure of high nitrogen austenitic stainless steel fabricated by wire and arc additive manufacturing[J]. Journal of Manufacturing Processes, 2021, 61: 261 − 269. doi: 10.1016/j.jmapro.2020.11.020

    [12]

    Zhang X, Wang K, Zhou Q, et al. System study of the formability, nitrogen behaviour and microstructure features of the CMT wire and arc additively manufactured high nitrogen Cr-Mn stainless steel [J]. Materials Today Communications, 2021, 27: 102263.

    [13]

    Yang D, Fang H, Peng Y, et al. Investigation of spatters in cold metal transfer + pulse-based wire and arc additive manufacturing of high nitrogen austenitic stainless steel[J]. Journal of Materials Engineering and Performance, 2021, 30(9): 6881 − 6894. doi: 10.1007/s11665-021-06048-w

    [14]

    Huang J, Yuan W, Yu S, et al. Droplet transfer behavior in bypass-coupled wire arc additive manufacturing[J]. Journal of Manufacturing Processes, 2020, 49: 397 − 412. doi: 10.1016/j.jmapro.2019.12.002

    [15]

    Li Y, Su C, Zhou X, et al. A more precise unified model to describe comprehensive multiphysics and multiphase phenomena in plasma arc welding[J]. Journal of Manufacturing Processes, 2020, 59: 668 − 78. doi: 10.1016/j.jmapro.2020.10.043

    [16]

    Ríos S, Colegrove P A, Williams S W. Metal transfer modes in plasma wire + arc additive manufacture[J]. Journal of Materials Processing Technology, 2019, 264: 45 − 54. doi: 10.1016/j.jmatprotec.2018.08.043

    [17]

    Chu S C, Lian S S. Numerical analysis of temperature distribution of plasma arc with molten pool in plasma arc melting[J]. Computational Materials Science, 2004, 30(3-4): 441 − 447. doi: 10.1016/j.commatsci.2004.03.014

  • 期刊类型引用(3)

    1. 饶德林,张瑞尧,S.Paddea,张书彦. 非均匀残余应力的钻孔法测量原理及应用. 中国测试. 2024(S1): 166-170 . 百度学术
    2. 苏昊,周蠡,张超. 大口径复合材料顶管接头应力分布模拟仿真. 粘接. 2024(09): 79-82 . 百度学术
    3. 潘寿虎,陈国仓,申东滨,倪俊国,秦璐璐. 动态汽车衡型式评价中关于“零点问题”的分析. 计量与测试技术. 2024(11): 74-75+78 . 百度学术

    其他类型引用(2)

图(13)  /  表(2)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  19
  • PDF下载量:  21
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-03-13
  • 网络出版日期:  2024-03-06
  • 刊出日期:  2024-05-24

目录

    /

    返回文章
    返回