Transformation characteristics of high-nitrogen steel droplets based on PTA process
-
摘要:
丝材 + 电弧增材制造(wire and arc additive manufacturing, WAAM)适用于一体化成形大型复杂结构组件,在保证高氮钢增材结构件性能的同时,进一步提升高氮钢丝材的沉积速率,需要对不同直径高氮钢丝材的等离子弧增材工艺特性进行研究. 通过设计不同的送丝高度和送丝速度对高氮钢增材过程中的飞溅行为,及焊道N元素含量的变化进行研究,分析等离子弧增材制造中HNS6-N5高氮钢丝材的熔化特性和飞溅过程. 结果表明,送丝速度和送丝高度决定了高氮钢熔滴的过渡模式,也影响了焊道成形与工艺稳定性. 在相同的热输入下,随着送丝速度的减小,熔滴的飞溅行为更加剧烈,同时焊缝中的N元素含量呈现下降趋势,随着送丝速度的增加,焊缝中的N元素含量逐渐增加,综合调节丝材直径、送丝速度与送丝高度可以获得过程稳定、熔滴过渡飞溅、焊缝氮含量高、熔覆效率高的增材效果.
Abstract:Wire and arc additive manufacturing (WAAM) using high-nitrogen steel is suitable for the integrated forming of large and complex structural components. In order to improve the deposition rate of high-nitrogen steel wire while ensuring the performance of additively manufactured components, it is necessary to study the plasma arc additive manufacturing characteristics of different diameters of high-nitrogen steel wire. The melting characteristics and spatter process of HNS6-N5 high-nitrogen steel wire in plasma arc additive manufacturing were analyzed. The study investigated the spatter behavior and N element content in weld metal during the additive manufacturing of high-nitrogen steel by designing different wire feed heights and feed speeds. The results show that the wire feed speed and height determine the transitional mode of high-nitrogen steel droplets and also affect the weld bead formation and process stability. Under the same heat input, decreasing the wire feed speed results in more intense spatter behavior of the molten droplets, while the N element content in the weld bead decreases. Increasing the wire feed speed gradually increases the N element content in the weld bead. By comprehensively adjusting the wire diameter, feed speed, and feed height, a stable process with low spatter, high nitrogen content in the weld bead, and high deposition efficiency can be achieved.
-
Keywords:
- High-nitrogen steel /
- droplet transition /
- nitrogen loss /
- melting efficiency
-
-
表 1 焊丝和基板化学成分表(质量分数,%)
Table 1 Chemical compositions of the substrate and wire
材料 C Mn Cr Si Ni Mo N P S 基板 ≤0. 08 ≤2. 0 19. 0 ≤1. 0 9. 0 — — ≤0. 035 ≤0. 03 焊丝 0.027 6.85 21.03 — 5.37 2.38 0.58 0.011 0.001 表 2 焊接工艺参数
Table 2 Welding process paraments
焊接速度
v/(mm.s−1)焊道长度
L/mm离子气流量
q1/(L·min−1)保护气流量
q2/(L·min−1)距基板高度
h/mm3.5 100 1.2 19 8 -
[1] Masumura T, Nakada N, Tsuchiyama T, et al. The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels[J]. Acta Materialia, 2015, 84: 330 − 338. doi: 10.1016/j.actamat.2014.10.041
[2] Zhang X, Zhou Q, Wang K, et al. Study on microstructure and tensile properties of high nitrogen Cr-Mn steel processed by CMT wire and arc additive manufacturing [J]. Materials & Design, 2019, 166: 107611.
[3] Stein G, Hucklenbroich I. Manufacturing and applications of high nitrogen steels[J]. Materials and Manufacturing Processes, 2004, 19(1): 7 − 17. doi: 10.1081/AMP-120027494
[4] Talha M, Behera C K, Sinha O P. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications[J]. Materials Science & Engineering C, 2013, 33(7): 3563 − 3575.
[5] 王星星, 田家豪, 李帅, 等. 高氮钢连接技术研究进展[J]. 焊接学报, 2023, 44(9): 118 − 128. doi: 10.12073/j.hjxb.20221025001 Wang Xingxing, Tian Jiahao, Li Shuai, et al. Research progress on advanced joining technology of high-nitrogen steel[J]. Transactions of the China Welding Institution, 2023, 44(9): 118 − 128. doi: 10.12073/j.hjxb.20221025001
[6] Anil Kumar V, Gupta R K, Karthikeyan M K, et al. Development of high nitrogen stainless steel for cryogenic applications[J]. Materials Science Forum, 2015, 830: 23 − 26. doi: 10.4028/www.scientific.net/MSF.830-831.23
[7] Li S, Zhang C, Lu J, et al. A review of progress on high nitrogen austenitic stainless-steel research[J]. Materials Express, 2021, 11(12): 1901 − 1925. doi: 10.1166/mex.2021.2109
[8] Park W I, Jung S M, Sasaki Y. Fabrication of ultra high nitrogen austenitic stainless steel by NH3 solution nitriding[J]. ISIJ International, 2010, 50(11): 1546 − 51. doi: 10.2355/isijinternational.50.1546
[9] Qi M, Ren S, Chen J, et al. Research progress on high nitrogen stainless steel prepared by powder metallurgy technology[J]. Powder Metallurgy Technology, 2017, 35(4): 299 − 303.
[10] Astafurov S, Astafurova E, Reunova K, et al. Electron-beam additive manufacturing of high-nitrogen steel: Microstructure and tensile properties[J]. Materials Science & Engineering:A, 2021, 826: 141951. doi: 10.1016/j.msea.2021.141951
[11] Yang D, Huang Y, Fan J, et al. Effect of N2 content in shielding gas on formation quality and microstructure of high nitrogen austenitic stainless steel fabricated by wire and arc additive manufacturing[J]. Journal of Manufacturing Processes, 2021, 61: 261 − 269. doi: 10.1016/j.jmapro.2020.11.020
[12] Zhang X, Wang K, Zhou Q, et al. System study of the formability, nitrogen behaviour and microstructure features of the CMT wire and arc additively manufactured high nitrogen Cr-Mn stainless steel [J]. Materials Today Communications, 2021, 27: 102263.
[13] Yang D, Fang H, Peng Y, et al. Investigation of spatters in cold metal transfer + pulse-based wire and arc additive manufacturing of high nitrogen austenitic stainless steel[J]. Journal of Materials Engineering and Performance, 2021, 30(9): 6881 − 6894. doi: 10.1007/s11665-021-06048-w
[14] Huang J, Yuan W, Yu S, et al. Droplet transfer behavior in bypass-coupled wire arc additive manufacturing[J]. Journal of Manufacturing Processes, 2020, 49: 397 − 412. doi: 10.1016/j.jmapro.2019.12.002
[15] Li Y, Su C, Zhou X, et al. A more precise unified model to describe comprehensive multiphysics and multiphase phenomena in plasma arc welding[J]. Journal of Manufacturing Processes, 2020, 59: 668 − 78. doi: 10.1016/j.jmapro.2020.10.043
[16] Ríos S, Colegrove P A, Williams S W. Metal transfer modes in plasma wire + arc additive manufacture[J]. Journal of Materials Processing Technology, 2019, 264: 45 − 54. doi: 10.1016/j.jmatprotec.2018.08.043
[17] Chu S C, Lian S S. Numerical analysis of temperature distribution of plasma arc with molten pool in plasma arc melting[J]. Computational Materials Science, 2004, 30(3-4): 441 − 447. doi: 10.1016/j.commatsci.2004.03.014
-
期刊类型引用(3)
1. 饶德林,张瑞尧,S.Paddea,张书彦. 非均匀残余应力的钻孔法测量原理及应用. 中国测试. 2024(S1): 166-170 . 百度学术
2. 苏昊,周蠡,张超. 大口径复合材料顶管接头应力分布模拟仿真. 粘接. 2024(09): 79-82 . 百度学术
3. 潘寿虎,陈国仓,申东滨,倪俊国,秦璐璐. 动态汽车衡型式评价中关于“零点问题”的分析. 计量与测试技术. 2024(11): 74-75+78 . 百度学术
其他类型引用(2)