Microstructure and mechanical properties of Al-Mg-Cu alloy fabricated by heterogeneous twin-wire indirect arc additive manufacturing
-
摘要: 提出了一种新型异质双丝间接电弧增材制造(TWIA-AM)方法,同步送进ER2319和ER5356两种焊丝,制备了Al-3.5Mg-1.7Cu合金试样,并对沉积的Al-3.5Mg-1.7Cu铝合金试样的组织和力学性能进行了研究. 结果表明,Al-3.5Mg-1.7Cu合金试样第二相主要由Al,Mg和Cu元素组成,为α-Al相和S相(Al2CuMg),晶粒形态在层间区域呈现粗大的柱状晶,层中心区域为等轴晶和细小的胞状晶组成;试样平均硬度为73.7 HV,存在周期性低硬度区. 试样平行增材方向(BD方向)、垂直于增材方向的平均抗拉强度和断后伸长率分别为225,235 MPa和9.0%,13.0%,力学性能表现为各向异性,观察断口形貌呈现典型的韧性断裂特征.
-
关键词:
- 双丝间接电弧 /
- 增材制造 /
- Al-Mg-Cu合金 /
- 微观组织 /
- 力学性能
Abstract: A new heterogeneous twin-wire indirect arc additive manufacturing (TWIA-AM) method was proposed. The ER2319 wire and ER5356 wire were fed synchronously and Al-3.5Mg-1.7Cu alloy components were prepared. The microstructure and mechanical properties of the deposited Al-3.5Mg-1.7Cu alloy components were investigated. The results showed that the second phase composition of Al-3.5Mg-1.7Cu alloy was mainly Al, Mg and Cu, and consisted of α-Al and S (Al2CuMg) phases. The grain morphology appeared as coarse columnar crystals at interlayer regions, and the center area of the layer is composed of equiaxed crystals and fine cellular crystals, and the layer center region was composed of equiaxed crystals and fine cellular crystals. The average micro-hardness of the sample is 73.7 HV with a periodic low hardness zone. The average tensile strength and elongation of the samples parallel to the building direction (BD direction) and perpendicular to the BD direction were 225, 235 MPa, 9.0% and 13.0%, respectively, exhibiting anisotropic mechanical properties. The fracture morphology exhibited the characteristics of typical plastic fracture. -
-
图 5 Al-Mg-Cu合金的凝固途径[17]
Figure 5. Solidification pathways for Al-Mg-Cu alloys
表 1 基板和焊丝的化学成分(质量分数,%)
Table 1 Chemical compositions of substrate and welding wire
材料 Mg Cu Zn Mn Si Ti Fe Al 5083 4.0 0.10 0.25 0.40 0.40 0.15 0.20 余量 ER2319 0.20 6.30 0.05 0.30 0.10 0.15 0.10 余量 ER5356 4.50 0.05 0.05 0.13 0.15 0.13 0.20 余量 表 2 Al-Mg-Cu合金直壁墙增材制造工艺参数
Table 2 Process parameters of straight wall additive manufacturing of Al-Mg-Cu alloy
焊丝 极性 电流I /A 气体流速Q/ (L˙min−1) 焊丝伸出长度ls /mm 送丝速度vs / (m˙min−1) 焊丝端部与基板的距离la /mm ER2319 阳极 200 20 10 5.20 20 ER5356 阴极 200 20 10 14.30 20 表 3 TWIA-AMed Al-Cu-Mg合金的EDS结果(原子分数,%)
Table 3 EDS results of TWIA-AMed Al-Cu-Mg alloys
位置 Al Mg Cu A 96.37 3.37 0.26 B 74.28 13.77 11.95 C 85.70 8.57 5.73 -
[1] 张庆东. 美国铝业公司旗下航空航天产业发展路径分析[J]. 有色金属加工, 2022, 51(2): 1 − 5. Zhang Qingdong. Analysis on the development path of alcoa's aerospace industry[J]. Nonferrous Metals Processing, 2022, 51(2): 1 − 5.
[2] Qi Z W, Cong B Q, Qi B J, et al. Microstructure and mechanical properties of double-wire + arc additively manufactured Al-Cu-Mg alloys[J]. Journal of Materials Processing Technology, 2018, 255: 347 − 353. doi: 10.1016/j.jmatprotec.2017.12.019
[3] Huang T, Qi Z, Liu Z, et al. Enhanced damage tolerance through reconstructing residual stress and Cu-Mg co-clusters by pre-rolling in an Al-Cu-Mg alloy[J]. Materials Science & Engineering: A, 2017, 700: 241 − 249.
[4] 刘梦, 秦梦黎, 柏松, 等. 原子团簇尺寸对Al-Cu-Mg合金疲劳过程中滑移带形成及裂纹扩展行为的影响[J]. 有色金属科学与工程, 2023, 14(4): 501 − 510. Liu Meng, Qin Mengli, Bai Song, et al. Effect of solute cluster sizes on the formation of slip band in plastic deformation zone at fatigue crack tip and the fatigue crack propagation behavior of an Al-Cu-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 501 − 510.
[5] Gao C J, Wolff S, Wang S R. Eco-friendly additive manufacturing of metals: Energy efficiency and life cycle analysis[J]. Journal of Manufacturing Systems, 2021, 60: 459 − 472. doi: 10.1016/j.jmsy.2021.06.011
[6] Wang Liwei, Chen Shujun, Xiao Jun, et al. Droplet-targeting laser hybrid indirect arc for additive manufacturing technology−A preliminary study[J]. China Welding, 2020, 29(1): 50 − 55.
[7] Wu D T, An Q, Matsuda K J, et al. Characteristics of bypass coupling twin-wire indirect arc welding with high-speed welding mode[J]. Journal of Materials Processing Technology, 2021, 291: 116995. doi: 10.1016/j.jmatprotec.2020.116995
[8] Zhang Z H, Wu D T, Zou Y. Effect of bypass coupling on droplet transfer in twin-wire indirect arc welding[J]. Journal of Materials Processing Technology, 2018, 262: 123 − 130. doi: 10.1016/j.jmatprotec.2018.06.032
[9] Wu D T, An Q, Zhao G L, et al. Corrosion resistance of stainless steel layer prepared by twin-wire indirect arc surfacing welding[J]. Vacuum, 2020, 177: 109348. doi: 10.1016/j.vacuum.2020.109348
[10] Shi C W, Zou Y, Zou Z D, et al. Twin-wire indirect arc welding by modeling and experiment[J]. Journal of Materials Processing Technology, 2014, 214: 2292 − 2299. doi: 10.1016/j.jmatprotec.2014.04.027
[11] Shi C W, Zou Y, Zou Z D, et al. Physical characteristics of twin-wire indirect arc plasma[J]. Vacuum, 2014, 107: 41 − 50. doi: 10.1016/j.vacuum.2014.04.003
[12] Wu K Y, Cao X W, Yin T, et al. Metal transfer process and properties of double-wire double pulsed gas metal arc welding[J]. Journal of Manufacturing Processes, 2019, 44: 367 − 375. doi: 10.1016/j.jmapro.2019.06.019
[13] 张天奕, 张兆栋, 王泽力, 等. 旁路耦合三丝间接电弧增材制造成形特性[J]. 焊接学报, 2022, 43(9): 25 − 30. Zhang Tianyi, Zhang Zhaodong, Wang Zeli, et al. Forming characteristics of bypass coupling triple-wire gas indirect arc additive manufacturing[J]. Transactions of the China Welding Institution, 2022, 43(9): 25 − 30.
[14] 王宣. 基于多丝共熔的高强铝合金电弧增材制造方法及工艺研究[D]. 北京: 北京工业大学, 2019. Wang Xuan. Research on the method and characteristics of wire and arc additive manufacturing of high strength aluminum alloys based on mutual melting technology of muti-wires[D]. Beijing: Beijing University of Technology, 2019.
[15] Rui F A, St A, Jl A, et al. Hot-wire arc additive manufacturing of aluminum alloy with reduced porosity and high deposition rate[J]. Materials & Design, 2020, 199: 109370.
[16] Ou W, Mukherjee T, Knapp G L, et al. Fusion zone geometries, cooling rates and solidification parameters during wire arc additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1084 − 1094. doi: 10.1016/j.ijheatmasstransfer.2018.08.111
[17] Pickin C G, Williams S W, Prangnell P, et al. Control of weld composition when arc welding high strength aluminum alloys using multiple filler wires[J]. Science and Technology of Welding and Joining, 2013, 15(6): 491 − 496.
[18] Jiang P F, Li X R, Zong X M, et al. Multi-wire arc additive manufacturing of Ti basic heterogeneous alloy: Effect of deposition current on the microstructure, mechanical property and corrosion-resistance[J]. Journal of Alloys and Compounds, 2022, 920: 166056. doi: 10.1016/j.jallcom.2022.166056
[19] Dixit M, Mishra R S, Sankaran K K. Structure–property correlations in Al 7050 and Al 7055 high-strength aluminum alloys[J]. Materials Science & Engineering A, 2007, 478(1-2): 163 − 172.
[20] Liu Y, Liang S, Jiang D. Influence of repetitious non-isothermal aging on microstructure and strength of Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2016, 689: 632 − 640. doi: 10.1016/j.jallcom.2016.08.017
[21] Xu X, Zheng J, Zhi L, et al. Precipitation in an Al-Zn-Mg-Cu Alloy during Isothermal Aging: Atomic-scale HAADF-STEM Investigation[J]. Materials Science & Engineering A, 2017, 691: 60 − 70.
[22] Ma T, Ge J, Chen Y, et al. Observation of in-situ tensile wire-arc additively manufactured 205A aluminum part: 3D pore characteristics and microstructural evolution[J]. Materials Letters, 2019, 237(15): 266 − 269.