高级检索

热处理工艺对FGH96合金惯性摩擦焊组织与显微硬度的影响

张春波, 梁武, 周军, 乌彦全, 张友昭, 李相伟

张春波, 梁武, 周军, 乌彦全, 张友昭, 李相伟. 热处理工艺对FGH96合金惯性摩擦焊组织与显微硬度的影响[J]. 焊接学报, 2023, 44(8): 57-62. DOI: 10.12073/j.hjxb.20230220002
引用本文: 张春波, 梁武, 周军, 乌彦全, 张友昭, 李相伟. 热处理工艺对FGH96合金惯性摩擦焊组织与显微硬度的影响[J]. 焊接学报, 2023, 44(8): 57-62. DOI: 10.12073/j.hjxb.20230220002
ZHANG Chunbo, LIANG Wu, ZHOU Jun, WU Yanquan, ZHANG Youzhao, LI Xiangwei. Effect of heat treatment on microstructure and microhardness of FGH96 inertia friction welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 57-62. DOI: 10.12073/j.hjxb.20230220002
Citation: ZHANG Chunbo, LIANG Wu, ZHOU Jun, WU Yanquan, ZHANG Youzhao, LI Xiangwei. Effect of heat treatment on microstructure and microhardness of FGH96 inertia friction welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 57-62. DOI: 10.12073/j.hjxb.20230220002

热处理工艺对FGH96合金惯性摩擦焊组织与显微硬度的影响

基金项目: 国家自然科学基金资助项目(52005139);国家重点研发计划(2022YFB3404901).
详细信息
    作者简介:

    张春波,博士,高级工程师;主要从事先进摩擦焊接技术与高端摩擦焊接装备研发方面的工作;Email: zhangcbcb@163.com

    通讯作者:

    周军,硕士,研究员,博士研究生导师;Email: mch_zhoujun@126.com

  • 中图分类号: TG 401

Effect of heat treatment on microstructure and microhardness of FGH96 inertia friction welding

  • 摘要: 采用惯性摩擦焊接方法进行了FGH96高温合金焊接,借助光学显微镜、扫描电子显微镜、显微硬度仪对焊态和热处理态FGH96惯性摩擦焊接头组织和显微硬度进行了研究. 结果表明,焊缝中心区内发生完全动态再结晶,再结晶晶粒细小,晶粒尺寸为4.6 μm ± 0.3 μm,且二次γ′ 相完全溶解,导致硬度低于母材组织. 随着远离焊缝,二次γ′相含量逐渐增加,距焊缝1.5 mm后γ′相体积分数基本保持不变,但γ′相形貌由球形逐渐向立方体转变,导致硬度逐渐增加. 经热处理后,焊缝区域内二次γ′相的含量与形貌变化规律与焊态相似,但热处理后基材晶粒尺寸从11.4 μm ± 0.3 μm增大至13.5 μm ± 1.0 μm,是导致热处理后基材硬度较焊态较低的原因;另外热处理后三次γ′相的析出是导致热处理态焊缝硬度高于焊态的原因.
    Abstract: Using the inertial friction welding method, FGH96 high-temperature alloy was welded. The microstructure and properties of the welded and heat-treated FGH96 joint were studied by means of optical microscope, scanning electron microscope and microhardness tester. The results show that complete dynamic recrystallization occurs in the central area of the weld, the recrystallized grains are fine, the grain size is 4.6 μm ± 0.3 μm, and the secondary γ′ phase is completely dissolved, resulting in a lower hardness than the parent material organization. With the distance from the weld, the secondary γ′ phase content gradually increased, and the volume fraction of γ′ phase remained basically unchanged after 1.5 mm from the weld, but the γ′ phase morphology gradually changed from spherical to cubic, leading to a gradual increase in hardness. After heat treatment, the content and morphology of the secondary γ′ phase in the weld area changed similarly to the weld state, but the grain size of the base material increased from 11.4 μm ± 0.3 μm to 13.5 μm ± 1.0 μm after heat treatment, which is the reason for the lower hardness of the base material after heat treatment compared with the weld state. In addition, the precipitation of three γ′ phases after heat treatment is the reason for the higher hardness of the weld in the heat-treated state than in the welded state.
  • 图  1   FGH96合金宏观组织形貌

    Figure  1.   Macro-organization of FGH96 alloy. (a) OM cross-sectional micrograph of IFW joints of FGH96; (b) enlarged image of area B; (c) enlarged image of area C

    图  2   FGH96焊态试样(As-weld)不同区域γ′相SEM形貌

    Figure  2.   Images of γ' precipitates for as-weld component by SEM observation

    图  3   FGH96热处理态试样(HT)不同区域γ′相SEM形貌

    Figure  3.   Images of γ' precipitates for HT component by SEM observation

    图  4   As-weld与HT试样不同区域碳化物SEM形貌

    Figure  4.   Images of carbites distribution by SEM observation. (a) As-weld; (b) HT

    图  5   As-weld和HT试样焊缝及附近区域晶粒尺寸和取向分布

    Figure  5.   Grain size and orientation distribution (inverse pole figure, IPF) for As-weld and HT components by EBSD. (a) As-weld; (b) HT

    图  6   As-weld和HT试样动态再结晶区域晶粒取向及晶界和晶粒大小统计图

    Figure  6.   Misorientation distribution and grain size distribution for dynamic recrystallization zone of as-weld and HT conponents by EBSD. (a) As-weld IPF; (b) As-weld grain boundary map; (c) As-weld grain size distribution; (d) HT IPF; (e) HT grain boundary map; (f) HT grain size distribution

    图  7   As-weld和HT试样基体区域晶粒取向差分布和晶粒大小统计

    Figure  7.   Misorientation distribution and grain size distribution for as-weld and HT base metal by EBSD. (a) As-weld IPF; (b) As-weld grain boundary map; (c) As-weld misorientation distribution; (d) As-weld grain size distribution; (e) HT IPF; (f) HT grain boundary map; (g) HT misorientation distribution; (h) HT grain size distribution

    图  8   As-weld和HT试样显微硬度分布

    Figure  8.   Microhardness distribution for As-weld and HT conponents

  • [1]

    Xie J, Tian S, Shang L J, et al. Creep behaviors and role of dislocation network in a powder metallurgy Ni-based superalloy during medium-temperature[J]. Materials Science and Engineering:A, 2014, 606: 304 − 312. doi: 10.1016/j.msea.2014.03.088

    [2]

    Wu C, Tao Y, Jia J. Microstructure and properties of an advanced Nickel-base PM superalloy[J]. Journal of Iron and Steel Research International, 2014, 21(12): 1152 − 1157. doi: 10.1016/S1006-706X(14)60198-9

    [3]

    Li H Y, Sun J F, Hardy M C, et al. Effects of microstructure on high temperature dwell fatigue crack growth in a coarse grain PM nickel based superalloy[J]. Acta Materialia, 2015, 90: 355 − 369. doi: 10.1016/j.actamat.2015.02.023

    [4]

    Yang W P, Liu G Q, Wu K, et al. Influence of sub-solvus solution heat treatment on γ′ morphological instability in a new Ni-Cr-Co-based powder metallurgy superalloy[J]. Journal of Alloys and Compounds, 2014, 582: 515 − 521. doi: 10.1016/j.jallcom.2013.07.045

    [5]

    Zhang M, Li F, Yuan Z, et al. Effect of heat treatment on the micro-indentation behavior of powder metallurgy nickel based superalloy FGH96[J]. Materials & Design, 2013, 49: 705 − 715.

    [6]

    Gu Y, Tao C, He Y. Thermomechanical fatigue behavior of powder metallurgical nickel based superalloy FGH96[J]. Journal of Iron and Steel Research International, 2010, 17(6): 74 − 79. doi: 10.1016/S1006-706X(10)60117-3

    [7]

    Zheng L, Zhang M, Dong J. Oxidation behavior and mechanism of powder metallurgy Rene 95 nickel based superalloy between 800 and 1 000 °C[J]. Applied Surface Science, 2010, 256(24): 7510 − 7515. doi: 10.1016/j.apsusc.2010.05.098

    [8]

    Preuss M, Withers P J, Pang J W L, et al. Inertia welding nickel-based superalloy: Part I. Metallurgical characterization[J]. Metallurgical and Materials Transactions A, 2002, 33(10): 3215 − 3225. doi: 10.1007/s11661-002-0307-y

    [9]

    DuPont J N. Welding metallurgy and weldability of nickel-base alloys [M ]. New Jersey: John Wiley & Sons, 2009.

    [10]

    Karadge M, Grant B, Withers P J, et al. Thermal relaxation of residual stresses in nickel-based superalloy inertia friction welds[J]. Metallurgical and Materials Transactions A, 2011, 42(8): 2301 − 2311. doi: 10.1007/s11661-011-0613-3

    [11]

    Preuss M, Withers P J, Pang J W L, et al. Inertia welding nickel-based superalloy: Part II. Residual stress characterization[J]. Metallurgical and Materials Transactions A, 2002, 33(10): 3227 − 3234. doi: 10.1007/s11661-002-0308-x

    [12]

    Yang J, Li J L, Xiong J T, et al. Effect of solution treatment temperature on the γ′ precipitation distribution, high temperature tensile and fatigue properties of FGH96 joints prepared by inertia friction welding[J]. Materials Research Express, 2019, 6(11): 1165.

    [13]

    Wang X F, Zou J W, Davies C M, et al. Microstructure characterization of inertial friction welding zone for nickel-based superalloy FGH96[J]. Materials Science Forum, 2017, 898: 1110 − 1116. doi: 10.4028/www.scientific.net/MSF.898.1110

    [14]

    Henry M F, Yoo Y S, Yoon D Y, et al. The dendritic growth of γ′ precipitates and grain[J]. Metallurgical Transactions A, 1993, 24(8): 1733 − 1743. doi: 10.1007/BF02657848

    [15]

    Fan X, Guo Z, Wang X, et al. Morphology evolution of γ′ precipitates in a powder metallurgy Ni-base superalloy[J]. Materials Characterization, 2018, 139: 382 − 389. doi: 10.1016/j.matchar.2018.02.038

    [16] 赵军普, 袁守谦, 陶宇, 等. FGH96合金中γ′和碳化物相平衡计算[J]. 稀有金属材料与工程, 2011, 40(6): 1019 − 1024.

    Zhao Junpu, Yuan Shouqian, Tao Yu, et al. Calculation of γ′ and carbide phase equilibrium in FGH96 alloy[J]. Rare Metal Materials and Engineering, 2011, 40(6): 1019 − 1024.

    [17] 周磊, 汪煜, 邹金文. C元素对FGH96粉末高温合金显微组织和力学性能的影响[J]. 粉末冶金技术, 2017, 35(1): 46 − 52.

    Zhou Lei, Wang Yu, Zou Jinwen. Effect of C element on microstructure and mechanical properties of FGH96 powder high temperature alloy[J]. Powder Metallurgy Technology, 2017, 35(1): 46 − 52.

    [18]

    Ning Y Q, Fu M W, Yao W, et al. Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096. II: Characterization and application[J]. Materials Science and Engineering: A, 2012, 539: 101 − 106. doi: 10.1016/j.msea.2012.01.065

    [19]

    Ning Y Q, Yao Z K, Fu M W, et al. Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096. I: Microstructure and Mechanism[J]. Materials Science and Engineering: A, 2011, 528(28): 8065 − 8070.

  • 期刊类型引用(10)

    1. 陈恩光,苏新清,薛松柏,陈旭东,傅仁利,张笑天,程波,王长虹,王明伟. Ag-CuO-NiO-LiAlSiO_4复合钎料空气反应钎焊GH3128/Al_2O_3接头组织及性能. 材料导报. 2024(02): 161-166 . 百度学术
    2. 吴靓,李月,陈锦微,张汭,张乾坤,肖逸锋. 用于钎焊C/C复合材料的稀土改性还原氧化石墨烯增强AgCuTi复合钎料(英文). Journal of Central South University. 2024(05): 1398-1411 . 百度学术
    3. 续润洲,岳喜山,邓云华,任金伟,朱小龙. C/C复材与高温合金异种材料蜂窝结构钎焊界面组织及力学性能. 航空制造技术. 2023(18): 86-90+97 . 百度学术
    4. 周标,王浩,任新宇,邱嘉玉,潘晖. 采用BNi-5钎料钎焊K417G高温合金的界面组织和力学性能. 焊接. 2023(12): 12-16 . 百度学术
    5. 滕彬,武鹏博,李晓光,邹吉鹏,王诗洋,陈晓宇,贾立超. GH3128合金激光焊接头组织与性能. 焊接学报. 2022(07): 82-87+118 . 本站查看
    6. 侯金保,赵磊. SiC_f/SiC与MX246A钎焊接头界面组织及性能分析. 焊接学报. 2021(04): 74-78+100-101 . 本站查看
    7. 刘庭耀,张健,赖宇,魏育君,何云华,裴丙红. 基于CALPHAD方法对GH3128合金析出相的热力学模拟计算和应用. 特殊钢. 2020(01): 1-5 . 百度学术
    8. 刘庭耀,赖宇,付建辉,魏育君,何云华,裴丙红. GH3128合金的高温流变行为与组织演变规律. 金属热处理. 2020(06): 141-148 . 百度学术
    9. 于江,刘浩然,赵帅彤泽,杨笑,张文杰. TIG电弧作用下Ag-Cu-Ti钎料在C/C复合材料上的润湿性分析. 焊接学报. 2020(09): 69-73+100-101 . 本站查看
    10. 王万里,范东宇,黄继华,陈树海. TiNiNb钎焊C_f/SiC与TC4接头组织结构. 焊接学报. 2016(12): 13-16+129 . 本站查看

    其他类型引用(14)

图(8)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  34
  • PDF下载量:  68
  • 被引次数: 24
出版历程
  • 收稿日期:  2023-02-21
  • 网络出版日期:  2023-07-27
  • 刊出日期:  2023-08-16

目录

    /

    返回文章
    返回