高级检索

TP347H不锈钢焊接接头敏化特性分析

李乘安, 冯道臣, 章霖, 郑文健, 程茂, 鲁显京, 杨建国

李乘安, 冯道臣, 章霖, 郑文健, 程茂, 鲁显京, 杨建国. TP347H不锈钢焊接接头敏化特性分析[J]. 焊接学报, 2024, 45(1): 64-72. DOI: 10.12073/j.hjxb.20230106002
引用本文: 李乘安, 冯道臣, 章霖, 郑文健, 程茂, 鲁显京, 杨建国. TP347H不锈钢焊接接头敏化特性分析[J]. 焊接学报, 2024, 45(1): 64-72. DOI: 10.12073/j.hjxb.20230106002
LI Chengan, FENG Daochen, ZHANG Lin, ZHENG Wenjian, CHENG Mao, LU Xianjing, YANG Jianguo. Study on sensitization characteristics of TP347H stainless steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 64-72. DOI: 10.12073/j.hjxb.20230106002
Citation: LI Chengan, FENG Daochen, ZHANG Lin, ZHENG Wenjian, CHENG Mao, LU Xianjing, YANG Jianguo. Study on sensitization characteristics of TP347H stainless steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 64-72. DOI: 10.12073/j.hjxb.20230106002

TP347H不锈钢焊接接头敏化特性分析

基金项目: 国家自然科学基金资助项目(51705461, 51975530);浙江省市场监督管理局“雏鹰计划”培育项目资助(CY2022218)
详细信息
    作者简介:

    李乘安,硕士研究生;主要从事化工过程机械及材料相关方面的科研;Email: 2112002473@zjut.edu.cn

    通讯作者:

    郑文健,博士,副研究员;Email: zwj0322@zjut.edu.cn

  • 中图分类号: TG 457

Study on sensitization characteristics of TP347H stainless steel welded joints

  • 摘要:

    为明确TP347H不锈钢焊接接头敏化特性,对焊接接头进行不同条件的敏化处理. 结果表明,焊接接头热影响区敏化倾向严重,敏化过程中由于Nb原子在晶界上的结合能高于Cr原子,会先形成了粗大的初级铌碳化合物,后形成细小的二次铌碳化合物. 在700 ℃下保温时,焊接接头热影响区的敏化度呈现先提高后降低的趋势,当温度达到800 ℃及以上时,热处理不再提高接头热影响区的敏化度. 与实际生产线上服役21 000 h的F347H接头热影响区敏化特性对比,证实TP347H焊接接头650 ℃保温100 h即可达到敏化极限,其原因是Nb元素含量为C元素的数倍,大部分C元素与Nb元素结合形成NbC,而晶粒中扩散的C元素已与Cr元素充分结合,造成的敏化程度达到平衡状态.

    Abstract:

    In order to clarify the sensitization characteristics of TP347H stainless steel welded joints, the welded joints were heat treated at different temperatures, and the changes of sensitization degrees at different temperatures were studied. The results showed that an obvious sensitization trend was observed in the heat-affected zone(HAZ) of welded joints. During the sensitization process, because the binding energy of Nb atoms on the grain boundary is higher than that of Cr atoms, coarse primary niobium carbon compounds are formed first, and then fine secondary niobium carbon compounds are formed.When the temperature is kept at 700 ℃, the sensitization degree of the HAZ of the welded joint shows a trend of first increasing and then decreasing. When the temperature reaches 800 ℃ and above, heat treatment no longer increases the sensitization degree of the HAZ of the joint. Comparing with the sensitization characteristics of F347H joints with 21000 h in the actual production line, it is confirmed that the sensitization limit can be reached by holding the welded joints of TP347H at 650 ℃ for 100 h. The reason is that the content of Nb is several times that of C, most of C combines with Nb to form NbC, and the diffusion of C in the grain has been fully combined with Cr. The resulting sensitization reaches an equilibrium state.

  • 图  1   不锈钢管及接头

    Figure  1.   Stainless steel pipe and welded joint. (a) stainless steel pipe; (b) the metallography of the welded joint

    图  2   焊接接头SEM图像

    Figure  2.   SEM images of welded joint.

    图  3   不同温度试样腐蚀沟统计归一化数据

    Figure  3.   Statistical normalized data of the corrosion ditch of the sample at each temperature

    图  4   550 ℃热处理不同保温时间试样热影响区腐蚀形貌

    Figure  4.   Corrosion morphology of samples at different holding times under 550 ℃ heat treatment. (a) 10 h; (b) 20 h; (c) 50 h; (d) 100 h

    图  5   600 ℃热处理下不同保温时间试样的热影响区腐蚀形貌

    Figure  5.   Corrosion morphology of samples at different holding times under 600 ℃ heat treatment. (a) 1 h; (b) 4 h; (c) 10 h; (d) 20 h; (e) 50 h; (f) 100 h

    图  6   650 ℃热处理下不同保温时间试样的热影响区腐蚀形貌

    Figure  6.   Corrosion morphology of samples at different holding times under 650 ℃ heat treatment ℃. (a) 1 h; (b) 4 h; (c) 10 h; (d) 20 h; (e) 50 h; (f) 100 h

    图  7   700 ℃热处理下不同保温时间试样的热影响区腐蚀形貌

    Figure  7.   Corrosion morphology of samples at different holding times under 700 ℃ heat treatment. (a) 1 h; (b) 4 h; (c) 10 h; (d) 20 h; (e) 50 h; (f) 100 h

    图  8   800 ℃热处理下不同保温时间试样的热影响区腐蚀形貌

    Figure  8.   Corrosion morphology of samples at different holding times under 800 ℃ heat treatment. (a) 10 h; (b) 20 h; (c) 50 h; (d) 100 h

    图  9   900 ℃和620 ℃热处理试样

    Figure  9.   Samples at 900 ℃ and 620 ℃ heat treatment. (a) heat treatment at 900 ℃ for 1 h; (b) heat treatment at 900 ℃ for 2 h; (c) heat treatment at 900 ℃ for 5 h; (d) heat treatment at 620 ℃ for 21 000 h

    图  10   TEM组织形貌

    Figure  10.   TEM morphology

    图  11   TEM选区电子衍射分析

    Figure  11.   TEM selected area electron diffraction analysis. (a) SAED position ; (b) position b; (c) position c; (d) position d; (e) diffraction patterns corresponding to b; (f) diffraction patterns corresponding to c

    图  12   晶界附近元素分布

    Figure  12.   Elements distribution around grain boundary. (a) position a; (b) position b; (c) position c

    表  1   TP347H不锈钢钢管化学成分(质量分数,%)

    Table  1   Chemical composition of TP347H stainless steel pipe

    CSiMnPSCrNiNbFe
    0.0610.6131.010.0180.00817.2610.130.7余量
    下载: 导出CSV

    表  2   焊接工艺及参数

    Table  2   Welding method and process parameters

    焊道焊接方法焊接电流
    I/A
    电弧电压
    U/V
    焊接速度
    v/(cm·min−1)
    1 ~ 2GTAW100 ~ 1408 ~ 143 ~ 10
    3 ~ 17SMAW120 ~ 16020 ~ 304 ~ 12
    下载: 导出CSV

    表  3   TP347H不锈钢焊接接头热处理工艺

    Table  3   Heat treatment process of TP347H stainless steel welded joints

    热处理分组温度T/℃保温时间t/h
    A550102050100
    B6000.512410205070100
    C6500.512410205070100
    D7000.5124102050100
    E800102050100
    F900125
    下载: 导出CSV
  • [1]

    Jiang B, Hu X, He G, et al. Microstructural characterization and softening mechanism of ultra-low carbon steel and the control strategy in compact strip production process[J]. Metals and Materials International, 2020, 26(9): 1295 − 1305. doi: 10.1007/s12540-019-00392-2

    [2]

    Kim N, Gil W, Lim H, et al. Variation of mechanical properties and corrosion properties with Mo contents of hyper duplex stainless-steel welds[J]. Metals and Materials International, 2019, 25(1): 193 − 206. doi: 10.1007/s12540-018-0166-8

    [3] 陈崇龙, 周继辉, 李侃, 等. 核电321不锈钢旋转电弧窄间隙GTAW工艺[J]. 焊接, 2022(4): 17 − 22.

    Chen Chonglong, Zhou Jihui, Li Kan, et al. GTAW process of nuclear power 321 stainless steel[J]. Welding & Joining, 2022(4): 17 − 22.

    [4]

    Malhotra D, Shahi A S. Weld metal composition and aging influence on metallurgical, corrosion and fatigue crack growth behavior of austenitic stainless steel welds[J]. Materials Research Express, 2019, 6(10): 106555. doi: 10.1088/2053-1591/ab39ef

    [5]

    Khalifeh A R, Banaraki A D, Daneshmanesh H, et al. Stress corrosion cracking of a circulation water heater tubesheet[J]. Engineering Failure Analysis, 2017, 78: 55 − 66. doi: 10.1016/j.engfailanal.2017.03.007

    [6] 郑文健, 贺艳明, 杨建国, 等. 焊接熔池凝固过程联生结晶晶体学取向对线性不稳定动力学的影响[J]. 机械工程学报, 2018, 54(2): 62 − 69. doi: 10.3901/JME.2018.02.062

    Zheng Wenjian, He Yanming, Yang Jianguo, et al. Influence of the crystal orientation of epitaxial solidification on the linear instability dynamic during the solidification of welding pool[J]. Journal of Mechanical Engineering, 2018, 54(2): 62 − 69. doi: 10.3901/JME.2018.02.062

    [7]

    Kumar S, Shahi A S, Sharma V, et al. Effect of welding heat input and post-weld thermal aging on the sensitization and pitting corrosion behavior of AISI 304L stainless steel butt welds[J]. Journal of Materials Engineering and Performance, 2021, 30(3): 1619 − 1640. doi: 10.1007/s11665-021-05454-4

    [8]

    Morshed Behbahani K, Najafisayar P, Pakshir M, et al. An electrochemical study on the effect of stabilization and sensitization heat treatments on the intergranular corrosion behaviour of AISI 321H austenitic stainless steel[J]. Corrosion Science, 2018, 138: 28 − 41. doi: 10.1016/j.corsci.2018.03.043

    [9]

    Zhao Yongtao, Hu Yuqing, Dong Junhui, et al. The effect of welding materials on 1Cr18Ni9Ti and 2Cr13 steel welded joints electrochemical properties[J]. China Welding, 2022, 31(3): 42 − 47.

    [10] 仲杨, 郑志镇, 李建军, 等. 氮气辅助316L不锈钢激光MIG复合焊接组织与耐蚀性能[J]. 焊接学报, 2021, 42(12): 7 − 17.

    Zhong Yang, Zheng Zhizhen, Li Jianjun, et al. Nitrogen-assisted 316L stainless steel laser-MIG composite welding tissue and corrosion resistance[J]. Transactions of the China Welding Institution, 2021, 42(12): 7 − 17.

    [11]

    Köse C. Dissimilar laser beam welding of AISI 420 martensitic stainless steel to AISI 2205 duplex stainless steel: effect of post-weld heat treatment on microstructure and mechanical properties[J]. Journal of Materials Engineering and Performance, 2021, 30(10): 7417 − 7448. doi: 10.1007/s11665-021-06071-x

    [12]

    Tian L, Gao Z, Han Y. Effect of post-weld heat treatment on microstructure and corrosion properties of multi-layer super duplex stainless steel welds[J]. Materials Testing, 2021, 63(9): 791 − 796. doi: 10.1515/mt-2021-0015

    [13]

    Li M, Zhang W, Wang X, et al. Effect of Nb on the performance of 409 stainless steel for automotive exhaust systems[J]. Steel Research International, 2018, 89(7): 1700558. doi: 10.1002/srin.201700558

    [14]

    Moteshakker A, Danaee I, Moeinifar S, et al. Hardness and tensile properties of dissimilar welds joints between SAF 2205 and AISI 316L[J]. Science and Technology of Welding and Joining, 2016, 21(1): 1 − 10. doi: 10.1179/1362171815Y.0000000062

    [15]

    Loureiro A R, Costa B F O, Batista A C, et al. Effect of activating flux and shielding gas on microstructure of TIG welds in austenitic stainless steel[J]. Science and Technology of Welding and Joining, 2009, 14(4): 315 − 320. doi: 10.1179/136217108X347610

    [16]

    Jegdić B V, Bobić B M, Radojković B M, et al. Influence of the welding current intensity and nitrogen content on the corrosion resistance of austenitic stainless steels[J]. Materials and Corrosion, 2018, 69(12): 1758 − 1769. doi: 10.1002/maco.201810182

    [17]

    Gonzaga A C, Barbosa C, Tavares S S M, et al. Influence of post welding heat treatments on sensitization of AISI 347 stainless steel welded joints[J]. Journal of Materials Research and Technology, 2020, 9(1): 908 − 921. doi: 10.1016/j.jmrt.2019.11.031

    [18]

    Yin H, Song M, Deng P, et al. Thermal stability and microstructural evolution of additively manufactured 316L stainless steel by laser powder bed fusion at 500–800 ℃[J]. Additive Manufacturing, 2021, 41: 101981. doi: 10.1016/j.addma.2021.101981

    [19]

    Kim H P, Kim D J. Intergranular corrosion of stainless steel[J]. Corrosion Science and Technology, 2018, 17(4): 183 − 192.

    [20]

    Ko S W, Park H, Yoo I, et al. In-situ observation of high-temperature fracture behaviour of 347 stainless steel subjected to simulated welding process[J]. Archives of Metallurgy and Materials, 2021, 66(4): 1019.

    [21]

    Ravindranath K, Tanoli N, Al-Wakaa B. Effect of long-term service exposure on the localized corrosion and stress corrosion cracking susceptibility of type 347 stainless steel[J]. Corrosion, 2018, 74(3): 350 − 361. doi: 10.5006/2612

    [22]

    Kawano R, Kaneko K, Hara T, et al. Decorated dislocations with fine precipitates observed by FIB-SEM slice-sectioning tomography[J]. Isij International, 2015, 55(4): 858 − 862. doi: 10.2355/isijinternational.55.858

    [23]

    Prat O, Garcia J, Rojas D, et al. Investigations on coarsening of MX and M23C6precipitates in 12% Cr creep resistant steels assisted by computational thermodynamics[J]. Materials Science and Engineering:A, 2010, 527(21-22): 5976 − 5983. doi: 10.1016/j.msea.2010.05.084

    [24]

    Nikulin I, Kaibyshev R. Deformation behavior and the portevin-Le chatelier effect in a modified 18Cr–8Ni stainless steel[J]. Materials Science and Engineering:A, 2011, 528(3): 1340 − 1347. doi: 10.1016/j.msea.2010.10.056

图(12)  /  表(3)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  38
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-05
  • 网络出版日期:  2023-10-24
  • 刊出日期:  2024-01-30

目录

    /

    返回文章
    返回