高级检索

电阻辅助加热对2519A铝合金搅拌摩擦焊接成形性的影响

方晨, 刘胜胆, 易铁, 姜科达

方晨, 刘胜胆, 易铁, 姜科达. 电阻辅助加热对2519A铝合金搅拌摩擦焊接成形性的影响[J]. 焊接学报, 2023, 44(11): 59-66. DOI: 10.12073/j.hjxb.20230105001
引用本文: 方晨, 刘胜胆, 易铁, 姜科达. 电阻辅助加热对2519A铝合金搅拌摩擦焊接成形性的影响[J]. 焊接学报, 2023, 44(11): 59-66. DOI: 10.12073/j.hjxb.20230105001
FANG Chen, LIU Shengdan, YI Tie, JIANG Keda. Experimental and numerical simulation of the effect of resistance-assisted heating on formability of 2519A aluminum alloy during friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 59-66. DOI: 10.12073/j.hjxb.20230105001
Citation: FANG Chen, LIU Shengdan, YI Tie, JIANG Keda. Experimental and numerical simulation of the effect of resistance-assisted heating on formability of 2519A aluminum alloy during friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 59-66. DOI: 10.12073/j.hjxb.20230105001

电阻辅助加热对2519A铝合金搅拌摩擦焊接成形性的影响

详细信息
    作者简介:

    方晨,硕士. Email: 203112087@csu.edu.cn

    通讯作者:

    刘胜胆,教授,博士. Email: lsd_csu@csu.edu.cn

  • 中图分类号: TG 457.14

Experimental and numerical simulation of the effect of resistance-assisted heating on formability of 2519A aluminum alloy during friction stir welding

  • 摘要:

    采用试验与数值模拟相结合的方法探究了电阻辅助加热温度对2519A-T87铝合金搅拌摩擦焊接头成形性的影响,基于耦合欧拉-拉格朗日方法建立了电阻辅助加热搅拌摩擦焊的三维热-力耦合模型,分析了焊接过程温度场分布和材料流动行为,阐明了电阻辅助加热工艺消除搅拌摩擦焊隧道型缺陷的作用机理.结果表明,辅助加热工艺使焊接峰值温度从483 ℃提高至549 ℃,并增加了350 ℃以上高温区间的停留时间,扩大了高温分布区域,降低了材料变形抗力,增强了材料从焊核区后退侧运动至前进侧的流动性,使材料回填更充分,从而消除了焊缝内部隧道型缺陷.

    Abstract:

    In present study, the effects of the resistance-assisted heating process on the formability of 2519-T87 friction stir welded joints were investigated by experiments and numerical simulations. Based on the coupled Eulerian-Lagrangian (CEL) method, a three-dimensional thermal mechanical coupling model of friction stir welding with a resistance-assisted heating process was established. The temperature field and material flow behavior were analyzed, and the mechanism of eliminating tunnel hole defects during resistance-assisted heating friction stir welding process was discussed. The results show that the auxiliary heating process increases the welding peak temperature from 483 ℃ to 549 ℃, increases the residence time at high temperature above 350 ℃, and expands the high-temperature distribution area. This reduces the material deformation resistance, and enhances the fluidity of materials from the retreating side of the nugget zone to the advancing side, leading to more sufficient backfilling of materials, thus eliminating the tunnel hole defects in the joint.

  • 图  1   辅助加热FSW示意图

    Figure  1.   Schematic of auxiliary heating during FSW

    图  2   FSW过程中速度边界条件

    Figure  2.   Velocity boundary conditions in FSW process

    图  3   模拟焊缝与实际焊缝宏观形貌照片

    Figure  3.   Simulated and actual image of weld surface. (a) simulated image of weld surface in C-FSW; (b) simulated image of weld surface in P-FSW(100 ℃); (c) simulated image of weld surface in P-FSW(200 ℃); (d) actual image of weld surface in C-FSW; (e) actual image of weld surface in P-FSW(100 ℃); (f) actual image of weld surface inP-FSW(200 ℃)

    图  4   截面塑性应变及缺陷的模拟结果与试验结果照片

    Figure  4.   Images of simulation results and experimental results of section plastic strain and defects. (a) C-FSW; (b) P-FSW(100 ℃); (c) P-FSW(200 ℃)

    图  5   温度场模拟照片

    Figure  5.   Images of temperature field simulation results. (a) C-FSW; (b) P-FSW(100 ℃); (c) P-FSW(200 ℃)

    图  6   测量点模拟与实测焊接热循环曲线

    Figure  6.   Calculated and experimental welding thermal cycle at the measuring point

    图  7   焊核区模拟焊接热循环曲线

    Figure  7.   Welding thermal cycle simulation results of nugget zone

    图  8   示踪粒子及特征点的选取

    Figure  8.   Selection of tracer particles and characteristic point. (a) Distribution of tracer particles; (b) Selection of the characteristic point

    图  9   俯视视角下不同时刻示踪粒子分布

    Figure  9.   Tracer particles distribution at different times from top view. (a) C-FSW; (b) P-FSW

    图  10   侧视视角下不同时刻示踪粒子分布

    Figure  10.   Tracer particles distribution at different times from side view. (a) C-FSW; (b) P-FSW

    图  11   三维空间中搅拌针附近标识质点P的流动轨迹

    Figure  11.   Flow path of marked particle P near the pin in 3D space. (a) C-FSW; (b) P-FSW(200 ℃)

    表  1   2519A-T87 铝合金板材化学成分和力学性能

    Table  1   Chemical composition and mechanical properties of 2519A-T87 aluminum alloy sheet

    化学成分(质量分数,%) 力学性能
    CuFeMgMnSiTiZrAl抗拉强度Rm/MPa屈服强度RP0.2/MPa断后伸长率A(%)硬度H/HV
    5.800.100.200.300.020.050.19余量4674229.2144
    下载: 导出CSV

    表  2   换热系数设置

    Table  2   Heat transfer coefficients

    方法表面对流换热系数
    K/(W·m−2−1)
    环境温度
    Th/℃
    C-FSW 底面 300 30
    上表面和侧面 30 30
    P-FSW
    (100 ℃)
    底面 3 100
    上表面和侧面 30 30
    P-FSW
    (200 ℃)
    底面 3 200
    上表面和侧面 30 30
    下载: 导出CSV

    表  3   2519A-T87铝合金Johson-Cook本构模型参数

    Table  3   Material parameters in Johnson−Cook constitutive model for 2519A-T87 aluminum alloy

    初始屈服应力A/MPa材料应变硬化模量B/MPa材料应变率强化参数C硬化指数n材料软化指数m参考温度$ {{T}}_{{{\rm{ref}}}} $/℃材料熔点$ {{T}}_{{{\rm{melt}}}} $/℃参考应变率
    ${\dot{{ \varepsilon } } }_{{0} }$
    452.68282.600.014 20.420.74305421.0
    下载: 导出CSV
  • [1]

    Thomas W M, Nicholas E D, Needham J C. Friction stir welding: Great Britain. 9125978.8[P]. 1991-12-06.

    [2]

    Dialami N, Cervera M, Chiumenti M. Defect formation and material flow in friction stir welding[J]. European Journal of Mechanics-A/Solids, 2020, 80: 103912. doi: 10.1016/j.euromechsol.2019.103912

    [3] 文旭峰, 苗臣怀, 曹丽杰, 等. 5052铝合金搅拌摩擦焊的材料流动数值模拟[J]. 热加工工艺, 2022, 51(5): 105 − 109.

    Wen Xufeng, Miao Chenhuai, Cao Lijie, et al. Numerical simulation on material flow during friction stir welding of 5052 Al alloy[J]. Hot Working Technology, 2022, 51(5): 105 − 109.

    [4] 龙玲, 史清宇, 刘铁, 等. 搅拌摩擦焊接材料流动模型及在缺陷预测中的应用[J]. 焊接学报, 2019, 40(1): 84 − 88. doi: 10.12073/j.hjxb.2019400017

    Long Ling, Shi Qingyu, Liu Tie, et al. Modeling of material flow during friction stir welding and the application for defect prediction[J]. Transactions of the China Welding Institution, 2019, 40(1): 84 − 88. doi: 10.12073/j.hjxb.2019400017

    [5] 陈高强, 史清宇. 搅拌摩擦焊中材料流动行为数值模拟的研究进展[J]. 机械工程学报, 2015, 51(22): 11 − 21. doi: 10.3901/JME.2015.22.011

    Chen Gaoqiang, Shi Qingyu. Recent advances in numerical simulation of material flow behavior during frictions stir welding[J]. Journal of Mechanical Engineering, 2015, 51(22): 11 − 21. doi: 10.3901/JME.2015.22.011

    [6]

    Kim YG, Fujii H, Tsumura T. Three defect types in friction stir welding of aluminum die casting alloy[J]. Materials Science & Engineering A, 2006, 415(1-2): 250 − 254.

    [7]

    De P S, Mishra R S. Friction stir welding of precipitation strengthened aluminium alloys: scopes and challenges[J]. Science & Technology of Welding & Joining, 2013, 16(4): 343 − 347.

    [8]

    Padhy G K, Wu C S, Gao S. Auxiliary energy assisted friction stir welding – Status review[J]. Science and Technology of Welding & Joining, 2015, 20(8): 631 − 649.

    [9] 宋新华, 修腾飞, 金湘中, 等. 激光辅助加热搅拌摩擦焊3维流场数值模拟[J]. 激光技术, 2016, 40(3): 353 − 357. doi: 10.7510/jgjs.issn.1001-3806.2016.03.011

    Song Xinhua, Xiu Tengfei, Jin Xiangzhong, et al. Numerical simulation of 3D flow field on laser-assisted heating friction stir welding of steel[J]. Laser Technology, 2016, 40(3): 353 − 357. doi: 10.7510/jgjs.issn.1001-3806.2016.03.011

    [10]

    Yi T, Liu S D, Fang C, et al. Eliminating hole defects and improving microstructure and mechanical properties of friction stir welded joint of 2519 aluminum alloy via TIG arc[J]. Journal of Materials Processing Technology, 2022, 310: 117773. doi: 10.1016/j.jmatprotec.2022.117773

    [11] 朱智, 王敏, 张会杰, 等. 基于CEL方法搅拌摩擦焊材料流动及缺陷的模拟[J]. 中国有色金属学报, 2018, 28(2): 294 − 299. doi: 10.19476/j.ysxb.1004.0609.2018.02.10

    Zhu Zhi, Wang Min, Zhang Huijie, et al. Simulation on material flow and defect during friction stir welding based on CEL method[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(2): 294 − 299. doi: 10.19476/j.ysxb.1004.0609.2018.02.10

    [12]

    Tang J, Shen Y. Effects of preheating treatment on temperature distribution and material flow of aluminum alloy and steel friction stir welds[J]. The Society of Manufacturing Engineers, 2017, 29: 29 − 40.

    [13]

    Yaduwanshi D K, Bag S, Pal S. Numerical modeling and experimental investigation on plasma-assisted hybrid friction stir welding of dissimilar materials[J]. Materials & Design, 2016, 92: 166 − 183.

    [14]

    He X C, Gu F S, Ball A. A review of numerical analysis of friction stir welding[J]. Progress in Materials Science, 2014, 65: 1 − 66. doi: 10.1016/j.pmatsci.2014.03.003

    [15]

    Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(10): 31 − 48.

    [16]

    Liu W H, He Z T, Chen Y Q. Dynamic mechanical properties and constitutive equations of 2519A aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2179 − 2186. doi: 10.1016/S1003-6326(14)63330-6

    [17] 郭怀志, 潘家敬, 赵朋成, 等. 2219铝合金搅拌摩擦焊接过程数值分析[J]. 青岛科技大学学报(自然科学版), 2021, 42(3): 94 − 100. doi: 10.16351/j.1672-6987.2021.03.015

    Guo Huaizhi, Pan Jiajing, Zhao Pengcheng, et al. Numerical analysis of friction stir welding of 2219 Aluminum alloy[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2021, 42(3): 94 − 100. doi: 10.16351/j.1672-6987.2021.03.015

    [18] 徐韦锋, 刘金合, 朱宏强. 2219铝合金厚板搅拌摩擦焊接温度场数值模拟[J]. 焊接学报, 2010, 31(2): 63 − 66.

    Xu Weifeng, Liu Jinhe, Zhu Hongqiang. Numerical simulation of thermal field of friction stir welded 2219 aluminum alloy thick plate[J]. Transactions of the China Welding Institution, 2010, 31(2): 63 − 66.

    [19]

    Schmidt H, Hattel J, Wert J. An analytical model for the heat generation in friction stir welding[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12: 143 − 157. doi: 10.1088/0965-0393/12/1/013

    [20]

    Fuller C B. Friction stir tooling: Tool materials and designs[J]. Friction Stir Welding and Processing, 2007.

    [21]

    Nicholson D W. Finite element analysis: thermomechanics of solids, second edition[J]. CRC Press, 2008.

    [22]

    Constantin M A, Niţu E L, Diakhate M, et al. An efficient strategy for 3D numerical simulation of friction stir welding process of pure copper plates[J]. IOP Conference Series:Materials Science and Engineering, 2020, 916(1): 012021. doi: 10.1088/1757-899X/916/1/012021

    [23] 李文亚, 余敏, 李京龙. 质量放大因子对搅拌摩擦焊接插入过程的影响[J]. 焊接学报, 2010, 31(2): 1 − 4.

    Li Wenya, Yu Min, Li Jinglong. Effect of mass scaling factor on the plunge stage of friction stir welding[J]. Transactions of the China Welding Institution, 2010, 31(2): 1 − 4.

    [24] 朱涵文. 底部辅热搅拌摩擦焊工艺及其温度场数值模拟研究[D]. 镇江, 江苏科技大学, 2021.

    Zhu Hanwen. Process and numerical simulation of temperature field of friction stir welding with auxiliary heating[D]. Zhenjiang, Jiangsu University of Science and Technology, 2021.

    [25] 李慧中, 梁霄鹏, 张新明, 等. 2519铝合金热变形组织演化[J]. 中国有色金属学报, 2008, 18(2): 226 − 230. doi: 10.3321/j.issn:1004-0609.2008.02.006

    Li Huizhong, Liang Xiaopeng Zhang Xinming, et al. Microstructure evolution of 2519 aluminum alloy during hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(2): 226 − 230. doi: 10.3321/j.issn:1004-0609.2008.02.006

    [26]

    Alam M P, Sinha A N. Fabrication of third generation Al–Li alloy by friction stir welding: a review[J]. Sādhanā, 2019, 44(6): 1 − 13.

图(11)  /  表(3)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  39
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-04
  • 网络出版日期:  2023-08-29
  • 刊出日期:  2023-11-29

目录

    /

    返回文章
    返回