Design of multi-degree-of-freedom digital radiographic testing system
-
摘要:
针对目前运载火箭箱底、筒段、圆环零件的焊缝采用传统胶片照相进行检测,存在自动化程度低、过程繁琐、数字化程度低、且底片无法进行长期保存,无法满足当前多型号火箭并举下的快节奏研制需求. 运用X射线与成像板相结合的无损检测方法,采用双七轴机器人和同步升降转台作为运动执行机构,采用ADS多线程通信与Ethercat总线方式实现倍福控制器、成像检测软件、射线机、机器人和同步升降转台的实时通信,研发了一种基于机器人的多自由度数字射线成像检测系统,通过运动执行机构的路径规划与无损检测焊缝成像实现产品环缝、纵缝、变曲率焊缝的检测自动化,与传统胶片照相相比,检测效率提升5倍,检测精度提高42%,满足了目前对多型号火箭贮箱的检测工作.
Abstract:At present, the traditional film photography is used to detect the welding seam of the bottom, barrel and ring parts of the launch vehicle, which has the disadvantages of low automation, complicated process and low digitization, and the negative film can't be preserved for a long time, so it can't meet the fast-paced development requirements of the current multi-type rockets. A robot-based multi-degree-of-freedom digital radiographic inspection system was developed by using the nondestructive inspection method combining X-ray and imaging board, using double seven-axis robot and synchronous lifting turntable as motion actuators, and using ADS multi-thread communication and Ethercat bus to realize the real-time communication among the controller, imaging inspection software, X-ray machine, robot and synchronous lifting turntable. Through the path planning of the motion actuator and the nondestructive inspection of weld seam imaging, the inspection automation of circumferential seam, longitudinal seam and variable curvature weld seam of products is realized. Compared with the traditional film photography, the inspection efficiency is increased by 5 times and the inspection accuracy is increased by 42%, which meets the current inspection work of multi-model rocket tanks.
-
Keywords:
- Double robot cooperation /
- X-ray inspection /
- imaging board /
- Ethercat /
- automatic inspection /
- ADS
-
-
表 1 典型产品透照张数
Table 1 Number of transmission photos of typical products
产品 检测部位 胶片照相张数 数字射线张数 筒段 纵缝(1 400 mm) 32 16 箱底 1380环缝 86 42 3290环缝 圆环 瓜瓣纵缝 48 24 半箱 3350环缝 60 30 表 2 典型产品曝光参数
Table 2 Typical product exposure parameters
产品 焊接方法 检测部位 管电压U/kV 管电流I/mA 积分时间t/ms 采集帧数 帧/s 筒段 熔焊 纵缝 70 5 300 20 箱底 熔焊 环缝 70 5 300 20 搅拌摩擦焊 环缝 65 5 300 20 圆环 熔焊 纵缝 62 5 300 20 半箱 熔焊 环缝 70 5 300 20 锁底 75 5 400 20 表 3 典型产品检测图像质量对比
Table 3 Comparison of image quality of typical products
产品 焊接方法 透照厚度
dt/mm灵敏度mv/lux.s 分辨率LP/mm 归一化信噪比SNR/dB 标准A级 实测 标准A级 实测 标准A级 实测 筒段 熔焊 8 W13 W15 D10 D10 70 >156 箱底 熔焊 8 W13 W15 D10 D10 70 >132 搅拌焊 6 W14 W16 D10 D10 70 >128 圆环 熔焊 8 W13 W15 D10 D11 70 >168 半箱 熔焊 8 W13 W15 D10 D10 70 >172 10 W13 W14 D9 D10 70 >177 表 4 检测效率对比
Table 4 Comparison of detection efficiency
序号 型号 产品 图号 零件 用时(人*分钟)t/min 效率
提升DR RT 1 CZ-4 RII 2CDB044-0B 后底 30 180 6倍 2 CZ-2D RI 1XC0520-20 前圆环 30 160 5倍 3 CZ-2D YI 1XC0330-10 筒段 25 80 3倍 4 CZ-2D YII 2CBD02-0D 半箱
环缝30 180 6倍 5 CZ-2D YII 2CBD022-0B 前底 30 180 6倍 -
[1] 李金鑫. 火箭大喷管X射线检测系统的研制[D]. 哈尔滨, 哈尔滨工业大学, 2018. Li Jinxin. Development of X-ray inspection system for large rocket nozzle [D]. Harbin , Harbin Institute of Technology, 2018.
[2] 郑春, 吴昊. 自动洗片技术在大型炼化装置射线检测底片处理中的应用[J]. 焊接技术, 2015, 44(9): 84 − 85. Zheng Chun, Wu Hao. Application of automatic film processing technology in radiographic film processing of large-scale refinery units[J]. Welding Technology, 2015, 44(9): 84 − 85.
[3] 宋建岭, 李超. 搅拌摩擦焊在运载火箭贮箱制造中的应用与发展[J]. 焊接, 2018(5): 21 − 27. Song Jianling, Li Chao. Application of FSW technology to tank manufacturing of launch vehicle and its development[J]. Welding & Joining, 2018(5): 21 − 27.
[4] 刘立安, 赵舵, 陆伟, 等. 运载火箭贮箱箱底搅拌摩擦焊工艺研究[J]. 上海航天(中英文), 2020, 37(S2): 249 − 252. Liu Li’an, Zhao Duo, Lu Wei, et al. Application of friction stir welding in launch vehicle tank dome[J]. Aerospace Shanghai(Chinese & English), 2020, 37(S2): 249 − 252.
[5] 章清乐, 刘松平, 刘菲菲. 大型复合材料蜂窝夹芯结构X射线数字成像自动化快速扫描检测技术[J]. 航空制造技术, 2022(13): 78 − 83. Zhang Qingle, Liu Songping, Liu Feifei. Fast inspection of large-scale composite honeycomb sandwich structures using automated X-ray digital radiography scanning imaging technique[J]. Aviation Manufacturing Technology, 2022(13): 78 − 83.
[6] 徐莹. 焊缝图像缺陷无损检测系统研究[D]. 西安, 西安工业大学, 2014. Xu Ying. Research on nondestructive testing system of weld image defects [D]. Xi 'an, Xi 'an University of Technology, 2014.
[7] 林尚扬, 杨学勤, 徐爱杰, 等. 机器人智能化焊接技术发展综述及其在运载火箭贮箱中的应用[J]. 上海航天(中英文), 2021, 38(3): 8 − 17. Lin Shangyang, Yang Xueqin, Xu Aijie, et al. Overview of development of robot intelligent welding technology and its application in launch vehicle tank[J]. Shanghai Aerospace (Chinese & English), 2021, 38(3): 8 − 17.
[8] 闫明巍, 王永宏. 贮箱焊缝的射线底片影像识别方法研究[C]//第二届中国航天质量论坛, 北京, 2008. Yan Mingwei, Wang Yonghong. Research on X-ray film image recognition method of tank weld [C]//The 2nd China Aerospace Quality Forum, Beijing, 2008.
[9] 孙文斐. 基于射线检测的焊缝缺陷自动识别技术研究[J]. 电子测试, 2022, 36(4): 28 − 30. Sun Wenfei. Research on automatic recognition technology of weld defects based on radiographic inspection[J]. Electronic Test, 2022, 36(4): 28 − 30.
[10] 肖辉. 焊接缺陷射线DR图像自动检测与识别系统研究[D]. 南昌, 南昌航空大学, 2017. Xiao Hui. Research on automatic detection and recognition system of welding defects by X-ray DR image [D]. Nanchang, Nanchang Hangkong University, 2017.
[11] 王建, 张弓, 何文杰, 等. 基于V-REP的双机器人协同运动仿真与实验研究[J]. 现代制造工程, 2021(12): 21 − 27. Wang Jian, Zhang Gong, He Wenjie, et al. Simulation and experimental research of dual robot cooperative motion based on V-REP[J]. Modern Manufacturing Engineering, 2021(12): 21 − 27.
[12] 陈力啸, 傅云, 朱伟东. 双机器人协同精准铺丝技术[J]. 航空制造技术, 2022(13): 70 − 77. Chen Lixiao, Fu Yun, Zhu Weidong. Cooperative robots automatic fiber placement[J]. Aviation Manufacturing Technology, 2022(13): 70 − 77.
[13] 付兴, 李月, 徐海波, 等. 火箭贮箱喷涂机器人直接示教运动感知器设计与分析[J]. 传感器与微系统, 2021, 40(7): 78 − 80. Fu Xing, Li month, Xu Haibo, et al. Design and analysis of direct teaching motion sensor for rocket tank spraying robot[J]. Transducer and Microsystem Technologies, 2021, 40(7): 78 − 80.
[14] 孙振, 王涛, 薛智龙. 大型三维复杂构件双机器人协同焊接智能路径规划方法[J]. 机床与液压, 2020, 48(11): 13 − 20. Sun Zhen, Wang Tao, Xue Zhilong. Intelligent path planning method for collaborative welding large-scale three-dimensional complex component with dual robot[J]. Machine Tool and Hydraulic, 2020, 48(11): 13 − 20.
[15] 田昊, 唐道锋, 宋玉宝, 等. 双轴同步运动系统滑模PID交叉耦合控制[J]. 机械设计与制造, 2022(4): 178 − 182. doi: 10.3969/j.issn.1001-3997.2022.04.040 Tian Hao, Tang Daofeng, Song Yubao, et al. Sliding mode PID cross-coupling control of biaxial synchronous system[J]. Mechanical Design and Manufacturing, 2022(4): 178 − 182. doi: 10.3969/j.issn.1001-3997.2022.04.040
-
期刊类型引用(2)
1. 李爱群,晁磊,刘少波,吴宜峰,杨参天. 泡沫铝复合结构的制备研究进展与展望. 建筑结构. 2024(19): 90-98+168 . 百度学术
2. 王珊珊,魏雨函,薛新,吴章斌,白鸿柏. 弹性阻尼金属螺旋丝网夹芯结构连接工艺及力学特性. 复合材料学报. 2022(03): 1308-1321 . 百度学术
其他类型引用(8)