高级检索

Ti43.76Zr12.50Cu37.49-xNi6.25Cox非晶钎料真空钎焊TC4钛合金/316L不锈钢

韩文倩, 董红刚, 马月婷, 李鹏, 吴宝生, 张亮亮

韩文倩, 董红刚, 马月婷, 李鹏, 吴宝生, 张亮亮. Ti43.76Zr12.50Cu37.49-xNi6.25Cox非晶钎料真空钎焊TC4钛合金/316L不锈钢[J]. 焊接学报, 2024, 45(1): 47-57. DOI: 10.12073/j.hjxb.20221123001
引用本文: 韩文倩, 董红刚, 马月婷, 李鹏, 吴宝生, 张亮亮. Ti43.76Zr12.50Cu37.49-xNi6.25Cox非晶钎料真空钎焊TC4钛合金/316L不锈钢[J]. 焊接学报, 2024, 45(1): 47-57. DOI: 10.12073/j.hjxb.20221123001
HAN Wenqian, DONG Honggang, MA Yueting, LI Peng, WU Baosheng, ZHANG Liangliang. Vacuum brazing TC4 titanium alloy / 316L stainless steel with Ti43.76Zr12.50Cu37.49-xNi6.25Cox amorphous filler metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 47-57. DOI: 10.12073/j.hjxb.20221123001
Citation: HAN Wenqian, DONG Honggang, MA Yueting, LI Peng, WU Baosheng, ZHANG Liangliang. Vacuum brazing TC4 titanium alloy / 316L stainless steel with Ti43.76Zr12.50Cu37.49-xNi6.25Cox amorphous filler metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 47-57. DOI: 10.12073/j.hjxb.20221123001

Ti43.76Zr12.50Cu37.49-xNi6.25Cox非晶钎料真空钎焊TC4钛合金/316L不锈钢

基金项目: 国家自然科学基金资助项目(52275314,52075074)
详细信息
    作者简介:

    韩文倩,硕士研究生;主要从事钛合金/不锈钢异种金属钎焊工艺研究; Email: duthanwenqian@163.com

    通讯作者:

    董红刚,博士,教授,博士研究生导师;Email: donghg@dlut.edu.cn

  • 中图分类号: TG 454

Vacuum brazing TC4 titanium alloy / 316L stainless steel with Ti43.76Zr12.50Cu37.49-xNi6.25Cox amorphous filler metals

  • 摘要:

    根据双团簇模型设计并制备了Ti-Zr-Cu-Ni-Co系非晶钎料,用于真空钎焊TC4钛合金和316L不锈钢,分析了钎料中Co元素含量对钎焊接头界面微观组织形貌、力学性能及断裂行为的影响规律.结果表明,钎焊接头可划分为TC4/扩散区(I区)/钎缝中心区(II区)/界面区(III区)/316L,界面典型微观组织结构为TC4/β-Ti + Ti2Cu/(Ti, Zr)2(Cu, Ni) + Ti2Cu + Ti2(Cu, Ni) + TiFe/(Fe, Cr)2Ti + α-(Fe, Cr) + τ + γ-(Fe, Ni) + σ/316L,随着Co元素含量的增加,接头剪切强度先升高后降低再升高,当Co元素含量为1.56%时达到最大310 MPa,不添加Co元素时,接头断裂于钎缝中心区(II区);当Co元素含量为1.56% ~ 6.24%时,接头断裂于靠近316L母材的界面区(III区)附近,断裂模式为典型的解理断裂.

    Abstract:

    Ti-Zr-Cu-Ni-Co amorphous filler metals were designed and prepared for vacuum brazing of TC4 titanium alloy to 316L stainless steel according to the dual-cluster model. The effect of Co content in filler metals on the microstructure, mechanical properties and fracture behavior of brazed joints was investigated. The results showed that the cross section of brazed joint could be divided into TC4/diffusion zone I/brazing seam center zone II/interface zone III/316L. The typical interfacial microstructure of the brazed joints was TC4/β-Ti + Ti2Cu/(Ti, Zr)2(Cu, Ni) + Ti2Cu + Ti2(Cu, Ni) + TiFe/(Fe, Cr)2Ti + α-(Fe, Cr) + τ + γ -(Fe, Ni) + σ/316L. The shear strength of brazed joints first increased, then decreased and then increased with the increase of Co content. The maximum shear strength of 310 MPa was obtained at 1.56% Co. When Co element was not added, brazed joints fractured in the center of the brazing seam (zone II). And when the Co content was 1.56 ~ 6.24%, brazed joints fractured near the interface zone (zone III) of 316L base metal. The fracture mode was typical cleavage fracture.

  • 随着电子元器件封装密度的增加,陶瓷球栅阵列(CBGA)和陶瓷柱栅阵列(CCGA)因其高密度的面排布引脚形式,在航空航天等高可靠性领域产品中得到了广泛应用[1-2]. CBGA和CCGA封装器件分别通过陶瓷管壳上的焊球和焊柱实现与PCB基板的组装互连,由于氧化铝陶瓷管壳(热膨胀系数为6.5 × 10−6/℃)和PCB基板(热膨胀系数为18 × 10−6 ~ 21 × 10−6/℃)的热膨胀系数差了近3倍,这种差异会在温度变化过程中产生剪切应变而导致裂纹萌生,进而引发焊点失效,因此温度循环成为了封装器件可靠性评估的关键手段. CCGA封装是在CBGA封装的基础上,用柱栅阵列代替了球栅阵列,增加互连引脚的距离,大大缓解了热膨胀系数不匹配带来的焊点失效问题,提高了焊点的可靠性,成为大尺寸产品封装的更优选择[3-5].

    在温度循环过程中,焊点的界面显微组织会发生变化,包括金属间化合物(IMC)的成分及厚度等[6-8],界面的显微组织会影响焊点的可靠性,焊点的抗剪强度是反映其可靠性最直观的方式,因此分析温度循环过程中焊点的显微组织与抗剪强度的演变关系对揭示CCGA封装焊点的失效机理及建立可靠性评估依据具有重要的参考价值.

    文中以CCGA484封装器件为研究对象,分析温度循环过程中焊点的界面显微组织演变与抗剪强度的对应关系,研究温度循环过程中焊点的失效机理,为CCGA封装的发展及应用提供理论指导.

    试验中选用高温共烧氧化铝陶瓷外壳,型号为CLGA484,镀层为Ni/Au,焊盘直径为ϕ0.8 mm ± 0.05 mm,焊盘间距为1.27 mm,板级封装用PCB板上的焊盘直径为ϕ0.8 mm ± 0.05 mm,焊柱采用ϕ0.51 mm × 2.21 mm的Pb90Sn10普通高铅焊柱,植柱和组装到PCB板上采用的锡膏均采用Sn63Pb37.

    试验样品制备过程为:丝网印刷锡膏→植柱→真空回流焊接→清洗→PCB板喷印锡膏→CCGA器件与PCB焊盘喷印锡膏光学对位→真空回流焊接,完成板级封装后的试验样品如图1所示,将组装到PCB板的试样与未组装的CCGA器件同时进行温度循环试验,前者用于观察不同温度循环次数下焊柱的外观形貌,后者用于焊点的金相分析和剪切力测试.

    图  1  CCGA板级封装试样
    Figure  1.  Specimen of CCGA board-level packages

    对CCGA484试验样品进行温度循环试验,试验条件按照美军标MIL-STD-883. 温度循环曲线如图2所示,温度范围为−65 ~ 150 ℃,循环周期为50 min,高低温保温时间均为15 min,升降温速率相同,试验过程中,每隔100次温度循环取出进行形貌观察、剪切力测试和金相分析,共进行500次温度循环.

    图  2  温度循环曲线
    Figure  2.  Parameter of thermal cycling of CCGA solder joints

    选用抗剪强度作为CCGA焊点的可靠性评估依据,试验设备采用专门的微焊点强度测试仪(DAGE4800),剪切速度均为0.4 mm/s,由于CCGA484器件的焊柱间距较小,试验过程中需要铲去周围的焊柱,保证剪切工具在行进时不会接触其它材料.

    由于陶瓷管壳和PCB板的热膨胀系数差别较大,这种热失配会在温度变化过程中产生剪切应变,宏观表现为焊柱发生塑性变形.

    温度循环过程中焊柱形貌如图3所示. 从图中可以看出,温度循环次数达到400次时,焊柱在反复热冲击作用下开始发生明显的塑性变形,且表面变得更加粗糙,焊点位置伴随有轻微的颈缩现象,500次后焊柱的扭曲程度进一步加剧,但肉眼还未观察到焊点开裂现象.

    图  3  不同温度循环次数下CCGA封装器件的宏观形貌
    Figure  3.  Evolution of solder column morphology at different thermal cycling times. (a) 100 times; (b) 300 times; (c) 400 times; (d) 500 times

    由于焊柱在长时间的高温、恒压力作用下,即使应力小于屈服强度也会慢慢发生蠕变变形[9]. 在温度循环的升温及高温保温阶段,陶瓷的热膨胀系数大于PCB基板,焊柱发生倾斜,在温度循环的降温及低温保温阶段,焊柱恢复至初始状态后向相反方向偏移,在反复的升温降温过程中,焊柱蠕变变形逐渐累积,达到宏观可见的扭曲状态,而焊点钎料的强度要略大于焊柱,因此在焊点处会有颈缩现象产生.

    在焊点形成过程中,钎料与焊盘金属在短时间的高温作用下扩散生成硬脆的IMC层,实现焊柱与基板之间的电气和机械连接,但是在长时间的温度循环过程中,扩散作用导致IMC层厚度逐渐增加,其成分也会发生相应的变化,由于IMC的热膨胀系数与钎料相差较大,因此过厚的IMC会对焊点的可靠性产生不利的影响.

    不同温度循环次数下的CCGA焊点界面显微组织如图4所示,在温度循环前,高铅焊柱与Ni焊盘界面观察不到明显的IMC层,因为Ni相对稳定,其界面反应层与铜相比是相当薄的,所以观察不到,随着循环次数增加,界面出现不同颜色对比度的中间层,且厚度逐渐增加,根据Ni-Sn二元相图可知,Sn-Pb钎料与Ni焊盘扩散反应生成的界面IMC从Ni侧依次包括Ni3Sn,Ni3Sn2和Ni3Sn4,具体的化合物成分取决于Sn与Ni的相对浓度.

    图  4  CCGA封装器件焊点显微组织
    Figure  4.  Microstructure of CCGA solder joints at different thermal cycling times. (a) original; (b) 100 times; (c) 200 times; (d) 300 times

    采用EDS分析界面IMC成分,不同温度循环次数下测试IMC成分的位置如图5 ~ 图7所示,对应不同位置的成分如表1所示. 从图中可以看出,100次温度循环时,界面点1主要为偏析的富锡相,点2处Ni与Sn的原子比接近3∶4,结合Ni-Sn二元相图可知,应为Ni3Sn4化合物,与已有的研究一致[8];在200次温度循环后,界面点1处仍为Ni3Sn4相,靠近Ni焊盘侧的点2处Ni与Sn的原子比接近3∶2,推测为Ni3Sn2相;500次温度循环后,在Ni与Ni3Sn2相之间的点2处,Ni与Sn的原子比接近3∶1,应为Ni3Sn相,因此推测随着温度循环次数增加,从焊柱到Ni焊盘之间依次生成的IMC为富锡相→Ni3Sn4→Ni3Sn2→Ni3Sn. 分析IMC形成过程,认为在温度循环前,富锡相与Ni通过元素相互扩散,反应生成极少量Ni3Sn4化合物层,Ni3Sn4化合物层的生成阻挡了Sn与Ni的扩散反应,Ni与Ni3Sn4化合物层中微量的Sn继续发生扩散反应,生成Ni含量更高的Ni3Sn2化合物相,之后,Ni3Sn2化合物层进一步阻挡Ni3Sn4化合物层中Sn与Ni的扩散反应,生成Ni含量更高的Ni3Sn化合物相. 统计不同温度循环次数下界面IMC厚度,如图8所示,两者基本呈指数为1/2的幂函数增长关系,符合扩散控制机制.

    图  5  温度循环100次焊点界面IMC成分
    Figure  5.  IMC component of CCGA solder joints at thermal cycling of 100 times
    图  7  温度循环500次焊点界面IMC成分
    Figure  7.  IMC component of CCGA solder joints at thermal cycling of 500 times
    图  6  温度循环200次焊点界面IMC成分
    Figure  6.  IMC component of CCGA solder joints at thermal cycling of 200 times

    界面IMC层存在离子键或共价键,所以往往具有硬脆特性,与基板和焊柱的线膨胀系数差别较大,随着温度循环次数增加,硬脆的IMC层厚度会逐渐增加,因此焊点界面处会产生较大的应力集中,在反复热应力作用下会萌生不同方向的细微裂纹,如图7所示,推测随着温度循环次数继续增加,应力集中导致微裂纹沿着剪切应变方向逐渐扩展,直到覆盖整个焊点,导致基板与焊柱之间发生断裂失效.

    表  1  不同温度循环次数下焊点界面的成分分析
    Table  1.  Component of CCGA solder joints at different thermal cycling times
    循环次数界面点质量分数w(%)原子分数a(%)
    PbSnNiPbSnNi
    100点113.4376.3910.187.3572.9919.66
    点24.9769.3725.662.355.941.8
    200点1964.8326.174.252.7543.05
    点24.9151.9943.11.9335.6362.44
    500点18.7745.4445.793.5131.7764.72
    点28.2428.1663.62.9217.4479.64
    下载: 导出CSV 
    | 显示表格
    图  8  温度循环次数与界面IMC厚度的关系
    Figure  8.  Variations of IMC thickness of CCGA solder joint with different thermal cycling times

    焊点的力学性能是评估其可靠性的最直观方法之一,采用DAGE4800微焊点强度测试仪测试不同循环次数下焊点的抗剪强度,如图9所示. 随着温度循环次数的增加,CCGA封装焊点的抗剪强度呈现下降趋势,到500次温度循环结束,抗剪强度相对下降了15.6%,且下降的速率逐渐增大. 结合上文界面显微组织分析可知,长时间高温会促进界面元素相互扩散,依次生成Ni3Sn4,Ni3Sn2和Ni3Sn多种IMC化合物层,且IMC层厚度逐渐增加,这些化合物与Sn,Pb的晶格常数和晶格结构存在较大差异,具有较高的熔点,呈现硬脆特性,因此在反复塑性变形过程中会产生应力集中,容易萌生裂纹而导致焊点失效,所以焊点的力学性能随着IMC厚度增加而逐渐下降,与已有的研究结果一致[10]. 对抗剪强度Rτ与温度循环次数n之间的关系做曲线拟合,得到下式,即

    图  9  不同循环次数下焊点剪切力变化
    Figure  9.  Variations of shear strength of CCGA solder joints with different thermal cycling times
    $${R_\tau } = 682.25 - 0.06\;n - 2.77 \times {10^{ - 4}}{n^2}$$ (1)

    根据技术指标要求,焊柱的最小剪切力为5.6 N,由式(1)推算可得,当温度循环次数大于550次时,焊点的抗剪强度将不满足要求.

    (1) 温度循环超过400次时,CCGA器件焊柱开始发生明显的塑性变形.

    (2) CCGA封装器件的焊点随着温度循环次数增加,从Ni焊盘侧依次生成的IMC层成分为Ni3Sn→Ni3Sn2→Ni3Sn4,且IMC层厚度逐渐增加.

    (3) CCGA封装器件焊点的抗剪强度随着温度循环次数增加呈下降趋势,且下降的速率逐渐增大,到500次温度循环结束,抗剪强度相对下降了15.6%,这是由于硬脆的IMC层厚度增加,在变形过程中导致应力集中而引发焊点失效.

  • 图  1   母材的微观组织和XRD图谱

    Figure  1.   Microstructure and XRD patterns of base metals. (a) TC4 microstructure; (b) 316L microstructure; (c) TC4 XRD; (d) 316L XRD

    图  2   Ti-Zr-Cu-Ni-Co系非晶钎料

    Figure  2.   Ti-Zr-Cu-Ni-Co Ingots amorphous filler metals. (a) ingots; (b) width; (c) thickness

    图  3   钎焊装配和剪切夹具示意图

    Figure  3.   Schematic diagram of brazing assembly and shear test fixture. (a) brazing assembly; (b) shear test fixture

    图  4   钎焊工艺加热曲线

    Figure  4.   Heating curve for brazing process

    图  5   Ti-Zr-Cu-Ni-Co系非晶钎料表征

    Figure  5.   Ti-Zr-Cu-Ni-Co amorphous filler metals. (a) XRD patterns; (b) DTA curves

    图  6   Ti43.76Zr12.50Cu35.93Ni6.25Co1.56钎料钎焊接头的微观组织

    Figure  6.   Microstructure of brazed joint with Ti43.76Zr12.50Cu35.93Ni6.25Co1.56 filler metal. (a) low-magnification image of the joint and (b) magnified image of zone b in a

    图  7   采用Ti43.76Zr12.50Cu35.93Ni6.25Co1.56非晶钎料钎焊接头的元素分布

    Figure  7.   Elemental distribution of brazed joint with Ti43.76Zr12.50Cu35.93Ni6.25Co1.56 amorphous filler metal

    图  8   采用Ti43.76Zr12.50Cu35.93Ni6.25Co1.56非晶钎料钎焊接头316L母材侧的元素分布

    Figure  8.   Elemental distribution at 316L base metal side of brazed joint with Ti43.76Zr12.50Cu35.93Ni6.25Co1.56 amorphous filler metal

    图  9   采用Ti43.76Zr12.50Cu35.93Ni6.25Co1.56非晶钎料钎焊接头元素线扫描分布

    Figure  9.   Elemental line scanning distribution of brazed joint with Ti43.76Zr12.50Cu35.93Ni6.25Co1.56 amorphous filler metal. (a) integral joint; (b) magnified image of zone b in 9(a)

    图  10   950 ℃/10 min条件下不同Co含量非晶钎料钎焊接头界面微观组织

    Figure  10.   Effect of Co content in filler metals on interfacial microstructure of brazed joint at 950 ℃/10 min. (a) 0%; (b) 1.56%; (c) 3.12%; (d) 4.68%; (e) 6.24%

    图  11   不同Co元素含量钎焊接头III区Ti-Fe化合物层的厚度

    Figure  11.   Thickness of Ti-Fe reaction layer in zone III of brazed joints with different Co content

    图  12   950 ℃/10 min条件下不同Co元素含量非晶钎料钎焊接头的剪切强度

    Figure  12.   Shear strength of brazed joints with different Co content filler metals at 950 ℃/10 min

    图  13   950 ℃/10 min条件下不同Co元素含量非晶钎料钎焊接头断裂路径

    Figure  13.   Fracture path of brazed joints with different Co content filler metals at 950 ℃/10 min. (a) 0%; (b) 1.56%; (c) 3.12%; (d) 4.68%; (e) 6.24%

    图  14   使用不同钎料钎焊接头断口形貌

    Figure  14.   Fracture morphology of brazed joints. (a) Ti43.76Zr12.50Cu35.93Ni6.25Co1.56; (b) Ti43.76Zr12.50Cu34.37Ni6.25Co3.12

    图  15   使用不同钎料钎焊接头断口XRD图谱

    Figure  15.   XRD patterns of fracture surfaces. (a) Ti43.76Zr12.50Cu35.93Ni6.25Co1.56; (b) Ti43.76Zr12.50Cu34.37Ni6.25Co3.12

    表  1   母材化学成分(质量分数,%)

    Table  1   Chemical compositions of base metals

    母材AlVCrNiMoMnFeTi
    TC45.93.6余量
    316L16.510.22.01.3余量
    下载: 导出CSV

    表  2   钎料的固相线温度(Tm)和液相线温度(Tl)

    Table  2   Solidus temperature and liquidus temperature of filler metals

    钎料 固相线
    温度
    Tm/℃
    液相线
    温度
    Tl/℃
    熔化温度
    区间
    Tl ~ Tm/℃
    Ti43.76Zr12.50Cu37.49Ni6.25Co084786215
    Ti43.76Zr12.50Cu35.93Ni6.25Co1.5684385512
    Ti43.76Zr12.50Cu34.37Ni6.25Co3.1284987223
    Ti43.76Zr12.50Cu32.81Ni6.25Co4.6885086414
    Ti43.76Zr12.50Cu31.25Ni6.25Co6.2485487319
    下载: 导出CSV

    表  3   图6中标记位置的EPMA点元素分析结果(原子分数,%)

    Table  3   EPMA analysis results of the marked locations in Fig. 6

    TiCuZrNiCoAlVFeCr可能相
    A85.60.80.30.111.31.60.2α-Ti
    B75.84.60.61.40.37.25.83.90.6β-Ti
    C66.123.12.52.30.21.91.12.10.8Ti2Cu
    D72.67.02.81.40.34.52.76.22.5β-Ti
    E40.825.015.84.40.45.31.35.41.7(Ti, Zr)2(Cu, Ni)
    F63.027.93.72.60.20.80.41.30.2Ti2Cu
    G50.822.02.23.90.92.51.014.32.5Ti2(Cu, Ni) + TiFe
    H32.00.90.94.00.40.50.352.48.5(Fe, Cr)2Ti
    I3.90.63.40.30.10.859.131.8α-(Fe, Cr) + τ
    J1.00.39.30.50.170.818.0γ-(Fe, Ni) + σ
    下载: 导出CSV

    表  4   图14中标记位置的EDS点元素分析结果(原子分数,%)

    Table  4   EDS analysis results of the marked locations in Fig. 14

    TiCuZrNiCoAlVFeCr可能相
    A48.425.45.74.81.32.70.79.81.3Ti2Cu
    B53.825.211.02.80.23.20.42.90.6(Ti, Zr)2(Cu, Ni)
    C48.124.713.93.80.43.40.73.91.2(Ti, Zr)2(Cu, Ni)
    D30.80.72.13.40.61.10.450.510.5TiFe2
    E48.521.73.23.81.33.70.714.92.4Ti2(Cu, Ni) + TiFe
    F48.323.63.55.21.22.313.92.0Ti2(Cu, Ni) + TiFe
    G58.112.110.23.40.86.51.95.61.6(Ti, Zr)2(Cu, Ni)
    H49.118.92.07.12.62.60.515.31.9Ti2(Cu, Ni) + TiFe
    I49.919.12.75.72.63.50.614.21.7Ti-Cu-Fe
    J11.50.40.72.90.30.70.657.026.0FeCr
    K38.25.61.35.41.51.60.336.99.3TiFe
    L47.919.43.06.02.42.90.316.02.2Ti-Cu-Fe
    下载: 导出CSV
  • [1] 赵永庆, 葛鹏. 我国自主研发钛合金现状与进展[J]. 航空材料学报, 2014, 34(4): 51 − 61.

    Zhao Yongqing, Ge Peng. Current situation and development of new titanium alloys invented in China[J]. Journal of Aeronautical Materials, 2014, 34(4): 51 − 61.

    [2] 宋庭丰, 蒋小松, 莫德锋, 等. 不锈钢和钛合金异种金属焊接研究进展[J]. 材料导报, 2015, 29(6): 81 − 87.

    Song Tingfeng, Jiang Xiaosong, Mo Defeng, et al. A survey on dissimilar welding of stainless steel and titanium alloy[J]. Materials Reports, 2015, 29(6): 81 − 87.

    [3] 李鹏, 李京龙, 熊江涛, 等. 添加Ni + Nb中间层的钛合金与不锈钢扩散焊工艺研究[J]. 航空材料学报, 2011, 31(3): 46 − 51.

    Li Peng, Li Jinglong, Xiong Jiangtao, et al. Study on diffusion bonded titanium alloy to stainless steel with Ni + Nb interlayers[J]. Journal of Aeronautical Materials, 2011, 31(3): 46 − 51.

    [4] 邓云华, 岳喜山, 李晓辉, 等. TC4钛合金/304不锈钢异种材料蜂窝结构钎焊工艺[J]. 焊接学报, 2019, 40(10): 148 − 155.

    Deng Yunhua, Yue Xishan, Li Xiaohui, et al. Brazing process of TC4 titanium/304 stainless steel dissimilar materials honeycomb sandwich structure[J]. Transactions of the China Welding Institution, 2019, 40(10): 148 − 155.

    [5] 王廷, 张秉刚, 陈国庆, 等. 钛/钢异种金属焊接存在问题及研究现状[J]. 焊接, 2009(9): 29 − 33.

    Wang Ting, Zhang Binggang, Chen Guoqing, et al. Problems and research status of welding of dissimilar metals between titanium alloy and steel[J]. Welding & Joining, 2009(9): 29 − 33.

    [6]

    Hao X H, Dong H G, Li S, et al. Lap joining of TC4 titanium alloy to 304 stainless steel with fillet weld by GTAW using copper-based filler wire[J]. Journal of Materials Processing Tech, 2018, 257: 88 − 100. doi: 10.1016/j.jmatprotec.2018.02.020

    [7]

    Liu H, Cheng Z, Huang J H, et al. Feasibility study of different filler metals on MIG-TIG double-sided arc brazing of titanium alloy-stainless steel[J]. Journal of Manufacturing Processes, 2019, 47: 183 − 191. doi: 10.1016/j.jmapro.2019.09.029

    [8] 王廷, 张秉刚, 张艳桥, 等. 采用不同结构Cu/V填充层的钛合金/不锈钢电子束焊接试验[J]. 焊接学报, 2014, 35(8): 71 − 74.

    Wang Ting, Zhang Binggang, Zhang Yanqiao, et al. Experimental research on electron beam welding of titanium alloy to stainless steel based on Cu/V filler metals with different shapes[J]. Transactions of the China Welding Institution, 2014, 35(8): 71 − 74.

    [9]

    Tomashchuk I, Sallamand P, Belvavina N, et al. Evolution of microstructures and mechanical properties during dissimilar electron beam welding of titanium alloy to stainless steel via copper interlayer[J]. Materials Science and Engineering:A, 2013, 585: 114 − 122. doi: 10.1016/j.msea.2013.07.050

    [10]

    Zhang Y, Sun D Q, Gu X Y, et al. Nd/YAG pulsed laser welding of TC4 titanium alloy to 301L stainless steel via pure copper interlayer[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4): 953 − 961. doi: 10.1007/s00170-016-9453-z

    [11]

    Fang Y J, Jiang X S, Song T F, et al. Pulsed laser welding of Ti-6Al-4V titanium alloy to AISI 316L stainless steel using Cu/Nb bilayer[J]. Materials Letters, 2019, 244: 163 − 166. doi: 10.1016/j.matlet.2019.02.075

    [12]

    Balasubramanian M. Development of processing windows for diffusion bonding of Ti-6Al-4V titanium alloy and 304 stainless steel with silver as intermediate layer[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(9): 2932 − 2938. doi: 10.1016/S1003-6326(15)63919-X

    [13]

    Li P, Li C, Dong H G, et al. Vacuum diffusion bonding of TC4 titanium alloy to 316L stainless steel with AlCoCrCuNi2 high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2022, 909: 164698. doi: 10.1016/j.jallcom.2022.164698

    [14]

    Li P, Dong H G, Xia Y Q, et al. Inhomogeneous interface structure and mechanical properties of rotary friction welded TC4 titanium alloy/316L stainless steel joints[J]. Journal of Manufacturing Processes, 2018, 33: 54 − 63. doi: 10.1016/j.jmapro.2018.05.001

    [15]

    Liu H H, Aoki Y, Aoki Y, et al. Principle for obtaining high joint quality in dissimilar friction welding of Ti-6Al-4V alloy and SUS316L stainless steel[J]. Journal of Materials Science & Technology, 2020, 46: 211 − 224.

    [16]

    Chu Q L, Zhang M, Li J H, et al. Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding[J]. Materials Science and Engineering:A, 2017, 689: 323 − 331. doi: 10.1016/j.msea.2017.02.075

    [17]

    Zhou Q, Liu R, Ran C, et al. Effect of microstructure on mechanical properties of titanium-steel explosive welding interface[J]. Materials Science and Engineering:A, 2022, 830: 142260. doi: 10.1016/j.msea.2021.142260

    [18]

    Han K, Wang T, Chang S T, et al. Interface characteristics and mechanical property of titanium/steel joint by electron beam brazing with 72Ag-28Cu filler metal[J]. Journal of Manufacturing Processes, 2020, 59: 58 − 67. doi: 10.1016/j.jmapro.2020.09.049

    [19]

    Xia Y Q, Dong H G, Li P, et al. Brazing TC4 titanium alloy/316L stainless steel joint with Ti50- xZr xCu39Ni11 amorphous filler metals[J]. Journal of Alloys and Compounds, 2020, 849: 156650. doi: 10.1016/j.jallcom.2020.156650

    [20]

    Xia Y Q, Li P, Hao X H, et al. Interfacial microstructure and mechanical property of TC4 titanium alloy/316L stainless steel joint brazed with Ti-Zr-Cu-Ni-V amorphous filler metal[J]. Journal of Manufacturing Processes, 2018, 35: 382 − 395. doi: 10.1016/j.jmapro.2018.08.022

    [21] 朱瑞, 李国选, 汪月勇, 等. TC4钛合金-316L不锈钢真空钎焊接头组织与性能研究[J]. 有色金属工程, 2021, 11(12): 8 − 14. doi: 10.3969/j.issn.2095-1744.2021.12.002

    Zhu Rui, Li Guoxuan, Wang Yueyong, et al. An investigation on microstructure and mechanical properties of vacuum brazed TC4 titanium to 316L stainless steel[J]. Nonferrous Metals Engineering, 2021, 11(12): 8 − 14. doi: 10.3969/j.issn.2095-1744.2021.12.002

    [22]

    Ma Y P, Dong D D, Dong C, et al. Composition formulas of binary eutectics[J]. Scientific Reports, 2015, 5: 14 − 18.

    [23]

    Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817 − 2829. doi: 10.2320/matertrans.46.2817

    [24]

    Akbarpour M R, Mirabad H M, Hemmati A, et al. Processing and microstructure of Ti-Cu binary alloys: A comprehensive review[J]. Progress in Materials Science, 2022: 100933.

    [25]

    Turchanin M A, Velikanova T Y, Agraval P G, et al. Thermodynamic assessment of the Cu-Ti-Zr system. III. Cu-Ti-Zr System[J]. Powder Metallurgy and Metal Ceramics, 2007, 47: 586 − 606.

    [26]

    Li X Q, Li L, Hu K, et al. Vacuum brazing of TiAl-based intermetallics with Ti-Zr-Cu-Ni-Co amorphous alloy as filler metal[J]. Intermetallics, 2015, 57: 7 − 16. doi: 10.1016/j.intermet.2014.09.010

    [27]

    Raghavan V. Cu-Fe-Ti (Copper-Iron-Titanium)[J]. Journal of Phase Equilibria, 2002, 23(2): 172 − 174. doi: 10.1361/1054971023604152

    [28]

    Xia Y Q, Dong H G, Zhang R Z, et al. Interfacial microstructure and shear strength of Ti6Al4V alloy/316 L stainless steel joint brazed with Ti33.3Zr16.7Cu50-xNix amorphous filler metals[J]. Materials & Design, 2020, 187: 108380.

    [29]

    Zeng L J, Liu L B, Huang S X, et al. Experimental investigation of phase equilibria in the Ti-Fe-Cr ternary system[J]. Calphad, 2017, 58: 58 − 69. doi: 10.1016/j.calphad.2017.05.006

    [30]

    Yen Y W, Su J W, Huang D P. Phase equilibria of the Fe-Cr-Ni ternary systems and interfacial reactions in Fe–Cr alloys with Ni substrate[J]. Journal of Alloys and Compounds, 2007, 457(1/2): 270 − 278.

    [31]

    Cao X, Dong K W, Zhu R, et al. A high-strength vacuum brazed TC4/316L joint with a Ti-Zr-based amorphous ribbon as the filler metal[J]. Vacuum, 2021, 187: 110070.

  • 期刊类型引用(10)

    1. 陈澄,尹红波,王成,倪大海,谢璐,曾超林. 钼铜载体与铝合金外壳的无压纳米银胶低温烧结强度. 半导体技术. 2025(01): 95-100 . 百度学术
    2. 黄玺,张亮,王曦,陈晨,卢晓. 电子封装用纳米级无铅钎料的研究进展. 材料导报. 2024(23): 136-148 . 百度学术
    3. 黄天,甘贵生,刘聪,马鹏,江兆琪,许乾柱,陈仕琦,程大勇,吴懿平. 电子封装低温互连技术研究进展. 中国有色金属学报. 2023(04): 1144-1178 . 百度学术
    4. 官紫妍,吴丰顺,周龙早,李可为,丁立国,李学敏. 功率模块纳米银烧结技术研究进展. 电子工艺技术. 2023(04): 1-6 . 百度学术
    5. 傅必成,方毅,张乐,李道会,齐放,宋利军,祝温泊. Fluxless bonding with silver nanowires aerogel in die-attached interconnection. China Welding. 2023(02): 32-41 . 百度学术
    6. 杜伟,强军锋,余竹焕,高炜,阎亚雯,王晓慧,刘旭亮. 电子封装用纳米复合焊膏的研究进展. 材料导报. 2023(19): 162-172 . 百度学术
    7. 龙旭,种凯楠,苏昱太. 烧结银细观孔隙结构对宏观力学性能的影响. 焊接学报. 2023(12): 15-20+27+137-138 . 本站查看
    8. 齐苗苗,贺晓斌,刘双宝,杨婉春,祝温泊. Ag-Cu固溶体颗粒制备及低温烧结互连接头性能. 焊接学报. 2022(07): 97-101+119 . 本站查看
    9. 杨婉春,胡少伟,祝温泊,李明雨. 低温烧结纳米银膏研究进展. 焊接学报. 2022(11): 137-146+169-170 . 本站查看
    10. 王刘珏,瞿昀昊,吉勇. 颗粒形貌对银焊膏无压烧结行为的影响. 材料导报. 2022(S2): 347-351 . 百度学术

    其他类型引用(10)

图(15)  /  表(4)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  106
  • PDF下载量:  68
  • 被引次数: 20
出版历程
  • 收稿日期:  2022-11-22
  • 网络出版日期:  2023-07-10
  • 刊出日期:  2024-01-30

目录

/

返回文章
返回