Effect of long term high temperature aging on CGHAZ microstructure of T23 water wall welded joint
-
摘要:
通过高温时效方法分析了焊后未热处理T23水冷壁管焊接接头粗晶热影响区(coarse grained heat affected zone,CGHAZ)在服役过程中形成再热裂纹的微观机理,揭示了工程中未热处理T23水冷壁接头在机组启机后,短期运行容易发生开裂泄漏的内在原因. 采用材料表征手段对未时效和高温时效处理后的水冷壁焊接接头CGHAZ硬度、微观组织、析出物物相等进行系统分析. 结果表明,在530 ℃时效100 h后,CGHAZ硬度出现由晶内弥散强化导致的二次硬化现象,随着时效(运行)时间增加,CGHAZ硬度逐渐降低,但时效1000 h后,CGHAZ硬度仍有319 HV高于标准要求;在600 ℃温度下,随着时效时间的增加,CGHAZ硬度随之降低,组织回复、再结晶、马氏体板条宽化、位错密度降低、C元素及合金元素从基体析出等因素导致的CGHAZ硬度降低作用高于MX碳化物在晶内弥散析出导致的硬度升高,M23C6型碳(氮)化物在晶界、亚晶界逐渐析出和长大.
Abstract:The micro-mechanism of reheat crack formation in coarse grain heat affected zone (CGHAZ) of welded joint of T23 water wall tube without heat treatment after welding was analyzed by high temperature aging method.It reveals the internal reason that T23 water wall joint without heat treatment is easy to crack and leak in short-term operation after unit startup.The hardness, microstructure and precipitates of welded joints of water wall after unaged and high temperature aging treatment were systematically analyzed by means of material characterization.The results show that after aging at 530 ℃ for 100 h, the hardness of CGHAZ appears secondary hardening caused by intragranular dispersion strengthening. With the increase of aging (running) time, the hardness of CGHAZ gradually decreases, but after aging for 1000 h, the hardness of CGHAZ is still 319 HV, which is higher than the standard requirement.After aging at 600 ℃, the hardness of CGHAZ decreases with the increase of aging time. The hardness of CGHAZ decreased due to the recovery of microstructure,recrystallization, broadening of martensite lath, reduction of dislocation density, and precipitation of C and alloy elements from the matrix, which is higher than the hardness increased due to dispersion and precipitation of MX carbide in the grain. M23C6 carbide gradually precipitates and grows at grain boundaries and subgrain boundaries.
-
Keywords:
- high temperature aging /
- T23 steel /
- water cooling wall /
- CGHAZ /
- reheat crack
-
0. 序言
随着电子元器件封装密度的增加,陶瓷球栅阵列(CBGA)和陶瓷柱栅阵列(CCGA)因其高密度的面排布引脚形式,在航空航天等高可靠性领域产品中得到了广泛应用[1-2]. CBGA和CCGA封装器件分别通过陶瓷管壳上的焊球和焊柱实现与PCB基板的组装互连,由于氧化铝陶瓷管壳(热膨胀系数为6.5 × 10−6/℃)和PCB基板(热膨胀系数为18 × 10−6 ~ 21 × 10−6/℃)的热膨胀系数差了近3倍,这种差异会在温度变化过程中产生剪切应变而导致裂纹萌生,进而引发焊点失效,因此温度循环成为了封装器件可靠性评估的关键手段. CCGA封装是在CBGA封装的基础上,用柱栅阵列代替了球栅阵列,增加互连引脚的距离,大大缓解了热膨胀系数不匹配带来的焊点失效问题,提高了焊点的可靠性,成为大尺寸产品封装的更优选择[3-5].
在温度循环过程中,焊点的界面显微组织会发生变化,包括金属间化合物(IMC)的成分及厚度等[6-8],界面的显微组织会影响焊点的可靠性,焊点的抗剪强度是反映其可靠性最直观的方式,因此分析温度循环过程中焊点的显微组织与抗剪强度的演变关系对揭示CCGA封装焊点的失效机理及建立可靠性评估依据具有重要的参考价值.
文中以CCGA484封装器件为研究对象,分析温度循环过程中焊点的界面显微组织演变与抗剪强度的对应关系,研究温度循环过程中焊点的失效机理,为CCGA封装的发展及应用提供理论指导.
1. 试验方法
1.1 原材料及试验样品制备
试验中选用高温共烧氧化铝陶瓷外壳,型号为CLGA484,镀层为Ni/Au,焊盘直径为ϕ0.8 mm ± 0.05 mm,焊盘间距为1.27 mm,板级封装用PCB板上的焊盘直径为ϕ0.8 mm ± 0.05 mm,焊柱采用ϕ0.51 mm × 2.21 mm的Pb90Sn10普通高铅焊柱,植柱和组装到PCB板上采用的锡膏均采用Sn63Pb37.
试验样品制备过程为:丝网印刷锡膏→植柱→真空回流焊接→清洗→PCB板喷印锡膏→CCGA器件与PCB焊盘喷印锡膏光学对位→真空回流焊接,完成板级封装后的试验样品如图1所示,将组装到PCB板的试样与未组装的CCGA器件同时进行温度循环试验,前者用于观察不同温度循环次数下焊柱的外观形貌,后者用于焊点的金相分析和剪切力测试.
1.2 温度循环条件
对CCGA484试验样品进行温度循环试验,试验条件按照美军标MIL-STD-883. 温度循环曲线如图2所示,温度范围为−65 ~ 150 ℃,循环周期为50 min,高低温保温时间均为15 min,升降温速率相同,试验过程中,每隔100次温度循环取出进行形貌观察、剪切力测试和金相分析,共进行500次温度循环.
1.3 抗剪强度测试
选用抗剪强度作为CCGA焊点的可靠性评估依据,试验设备采用专门的微焊点强度测试仪(DAGE4800),剪切速度均为0.4 mm/s,由于CCGA484器件的焊柱间距较小,试验过程中需要铲去周围的焊柱,保证剪切工具在行进时不会接触其它材料.
2. 试验结果与分析
2.1 焊柱宏观形貌演变分析
由于陶瓷管壳和PCB板的热膨胀系数差别较大,这种热失配会在温度变化过程中产生剪切应变,宏观表现为焊柱发生塑性变形.
温度循环过程中焊柱形貌如图3所示. 从图中可以看出,温度循环次数达到400次时,焊柱在反复热冲击作用下开始发生明显的塑性变形,且表面变得更加粗糙,焊点位置伴随有轻微的颈缩现象,500次后焊柱的扭曲程度进一步加剧,但肉眼还未观察到焊点开裂现象.
由于焊柱在长时间的高温、恒压力作用下,即使应力小于屈服强度也会慢慢发生蠕变变形[9]. 在温度循环的升温及高温保温阶段,陶瓷的热膨胀系数大于PCB基板,焊柱发生倾斜,在温度循环的降温及低温保温阶段,焊柱恢复至初始状态后向相反方向偏移,在反复的升温降温过程中,焊柱蠕变变形逐渐累积,达到宏观可见的扭曲状态,而焊点钎料的强度要略大于焊柱,因此在焊点处会有颈缩现象产生.
2.2 焊点显微组织分析
在焊点形成过程中,钎料与焊盘金属在短时间的高温作用下扩散生成硬脆的IMC层,实现焊柱与基板之间的电气和机械连接,但是在长时间的温度循环过程中,扩散作用导致IMC层厚度逐渐增加,其成分也会发生相应的变化,由于IMC的热膨胀系数与钎料相差较大,因此过厚的IMC会对焊点的可靠性产生不利的影响.
不同温度循环次数下的CCGA焊点界面显微组织如图4所示,在温度循环前,高铅焊柱与Ni焊盘界面观察不到明显的IMC层,因为Ni相对稳定,其界面反应层与铜相比是相当薄的,所以观察不到,随着循环次数增加,界面出现不同颜色对比度的中间层,且厚度逐渐增加,根据Ni-Sn二元相图可知,Sn-Pb钎料与Ni焊盘扩散反应生成的界面IMC从Ni侧依次包括Ni3Sn,Ni3Sn2和Ni3Sn4,具体的化合物成分取决于Sn与Ni的相对浓度.
采用EDS分析界面IMC成分,不同温度循环次数下测试IMC成分的位置如图5 ~ 图7所示,对应不同位置的成分如表1所示. 从图中可以看出,100次温度循环时,界面点1主要为偏析的富锡相,点2处Ni与Sn的原子比接近3∶4,结合Ni-Sn二元相图可知,应为Ni3Sn4化合物,与已有的研究一致[8];在200次温度循环后,界面点1处仍为Ni3Sn4相,靠近Ni焊盘侧的点2处Ni与Sn的原子比接近3∶2,推测为Ni3Sn2相;500次温度循环后,在Ni与Ni3Sn2相之间的点2处,Ni与Sn的原子比接近3∶1,应为Ni3Sn相,因此推测随着温度循环次数增加,从焊柱到Ni焊盘之间依次生成的IMC为富锡相→Ni3Sn4→Ni3Sn2→Ni3Sn. 分析IMC形成过程,认为在温度循环前,富锡相与Ni通过元素相互扩散,反应生成极少量Ni3Sn4化合物层,Ni3Sn4化合物层的生成阻挡了Sn与Ni的扩散反应,Ni与Ni3Sn4化合物层中微量的Sn继续发生扩散反应,生成Ni含量更高的Ni3Sn2化合物相,之后,Ni3Sn2化合物层进一步阻挡Ni3Sn4化合物层中Sn与Ni的扩散反应,生成Ni含量更高的Ni3Sn化合物相. 统计不同温度循环次数下界面IMC厚度,如图8所示,两者基本呈指数为1/2的幂函数增长关系,符合扩散控制机制.
界面IMC层存在离子键或共价键,所以往往具有硬脆特性,与基板和焊柱的线膨胀系数差别较大,随着温度循环次数增加,硬脆的IMC层厚度会逐渐增加,因此焊点界面处会产生较大的应力集中,在反复热应力作用下会萌生不同方向的细微裂纹,如图7所示,推测随着温度循环次数继续增加,应力集中导致微裂纹沿着剪切应变方向逐渐扩展,直到覆盖整个焊点,导致基板与焊柱之间发生断裂失效.
表 1 不同温度循环次数下焊点界面的成分分析Table 1. Component of CCGA solder joints at different thermal cycling times循环次数 界面点 质量分数w(%) 原子分数a(%) Pb Sn Ni Pb Sn Ni 100 点1 13.43 76.39 10.18 7.35 72.99 19.66 点2 4.97 69.37 25.66 2.3 55.9 41.8 200 点1 9 64.83 26.17 4.2 52.75 43.05 点2 4.91 51.99 43.1 1.93 35.63 62.44 500 点1 8.77 45.44 45.79 3.51 31.77 64.72 点2 8.24 28.16 63.6 2.92 17.44 79.64 2.3 抗剪强度测试结果与分析
焊点的力学性能是评估其可靠性的最直观方法之一,采用DAGE4800微焊点强度测试仪测试不同循环次数下焊点的抗剪强度,如图9所示. 随着温度循环次数的增加,CCGA封装焊点的抗剪强度呈现下降趋势,到500次温度循环结束,抗剪强度相对下降了15.6%,且下降的速率逐渐增大. 结合上文界面显微组织分析可知,长时间高温会促进界面元素相互扩散,依次生成Ni3Sn4,Ni3Sn2和Ni3Sn多种IMC化合物层,且IMC层厚度逐渐增加,这些化合物与Sn,Pb的晶格常数和晶格结构存在较大差异,具有较高的熔点,呈现硬脆特性,因此在反复塑性变形过程中会产生应力集中,容易萌生裂纹而导致焊点失效,所以焊点的力学性能随着IMC厚度增加而逐渐下降,与已有的研究结果一致[10]. 对抗剪强度Rτ与温度循环次数n之间的关系做曲线拟合,得到下式,即
$${R_\tau } = 682.25 - 0.06\;n - 2.77 \times {10^{ - 4}}{n^2}$$ (1) 根据技术指标要求,焊柱的最小剪切力为5.6 N,由式(1)推算可得,当温度循环次数大于550次时,焊点的抗剪强度将不满足要求.
3. 结论
(1) 温度循环超过400次时,CCGA器件焊柱开始发生明显的塑性变形.
(2) CCGA封装器件的焊点随着温度循环次数增加,从Ni焊盘侧依次生成的IMC层成分为Ni3Sn→Ni3Sn2→Ni3Sn4,且IMC层厚度逐渐增加.
(3) CCGA封装器件焊点的抗剪强度随着温度循环次数增加呈下降趋势,且下降的速率逐渐增大,到500次温度循环结束,抗剪强度相对下降了15.6%,这是由于硬脆的IMC层厚度增加,在变形过程中导致应力集中而引发焊点失效.
-
表 1 焊接工艺参数
Table 1 Welding parameters
预热温度
T1/℃层间温度
T2/℃焊接电流
I/A电弧电压
U/V150 ℃ 200 ~ 300 100 ~130 10 ~14 -
[1] 周任远, 朱丽慧, 李世贤, 等. T23钢再热裂纹敏感性的改善及其组织[J]. 钢铁, 2020, 55(3): 80 − 86. Zhou Renyuan, Zhu Lihui, Li Shixian, et al. Improvement of reheat crack sensitivity and microstructure of T23 steel[J]. Iron and Steel, 2020, 55(3): 80 − 86.
[2] Li Y, Wang X, Wang J Q, et al. Stress-relief cracking mechanism in simulated coarse-grained heat-affected zone of T23 steel[J]. Journal of Materials Processing Technology, 2019, 266: 73 − 81.
[3] 牛锐锋, 曹怡姗, 朱一乔, 等. 国产T23钢再热裂纹敏感性试验研究[J]. 兵器材料科学与工程, 2014, 37(5): 36 − 39. Niu Ruifeng, Cao Yishan, Zhu Yiqiao, et al. Experimental study on reheat crack sensitivity of domestic T23 steel[J]. Ordnance Material Science and Engineering, 2014, 37(5): 36 − 39.
[4] 于在松, 聂铭, 侯淑芳, 等. HCM2S(T23)钢中的碳化物及其演化规律[J]. 热力发电, 2012, 41(9): 1 − 6. Yu Zaisong, Nie Ming, Hou Shufang, et al. Carbides in HCM2S(T23) steel and its evolution law[J]. Thermal Power Generation, 2012, 41(9): 1 − 6.
[5] Zieliński A, Golański G, Sroka M, et al. Microstructure and mechanical properties of the T23 steel after long-term ageing at elevated temperature[J]. Materials at High Temperatures, 2016, 33: 154 − 163. doi: 10.1080/09603409.2016.1139306
[6] Miyata K, Igarashi M, Sawaragi Y. Effect of trace elements on creep properties of 0.06C-2.25Cr-1.6W-0.1Mo-0.25V-0.05Nb Steel[J]. ISIJ International, 1999, 39(9): 947 − 954. doi: 10.2355/isijinternational.39.947
[7] Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Materials Science & Engineering, A, 2006, 438: 237 − 240.
[8] 李世贤, 朱丽慧, 周任远, 等. T23低合金耐热钢再热裂纹敏感性研究[J]. 上海金属, 2020, 42(3): 7 − 11. Li Shixian, Zhu Lihui, Zhou Renyuan et al. Study on reheat crack sensitivity of T23 low alloy heat resistant steel[J]. Shanghai Metal, 2020, 42(3): 7 − 11.
[9] 周任远, 朱丽慧, 柯志刚, 等. 回火温度对改进型T23钢冲击吸收功的影响[J]. 钢铁, 2021, 56(3): 51 − 57. Zhou Renyuan, Zhu Lihui, Ke Zhigang et al. Influence of tempering temperature on impact absorption energy of improved T23 steel[J]. Iron and Steel, 2021, 56(3): 51 − 57.
[10] 王学, 李勇, 王家庆, 等. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736 − 748. Wang Xue, Li Yong, Wang Jiaqing, et al. Effect of high temperature aging on the microstructure and reheat crack susceptibility of T23 steel coarse-grained heat-affected zone[J]. Acta Metallurgica Sinica, 2021, 57(6): 736 − 748.
[11] 金玉静. T23钢粗晶热影响区再热裂纹敏感性研究[D]. 上海: 上海交通大学, 2015. Jin Yujing. Study on reheat crack sensitivity of T23 steel coarse grain heat affected zone [D]. Shanghai: Shanghai Jiaotong University, 2015.
[12] 金玉静, 周巍. 改良型T23钢CGHAZ再热裂纹开裂特征[J]. 金属热处理, 2017, 42(11): 191 − 197. Jin Yujing, Zhou Wei. CGHAZ reheat cracking characteristics of improved T23 steel[J]. Metal Heat Treatment, 2017, 42(11): 191 − 197.
[13] 周任远, 朱丽慧, 李世贤, 等. 改进型T23钢的再热裂纹敏感性[J]. 金属热处理, 2020, 45(1): 20 − 25. Zhou Renyuan, Zhu Lihui, Li Shixian. et al. Reheat crack susceptibility of improved T23 steel[J]. Metal Heat Treatment, 2020, 45(1): 20 − 25.
[14] 柯志刚, 朱丽慧, 周任远, 等. 改进型T23钢冲击韧度的改善[J]. 上海金属, 2022, 44(4): 49 − 54. Ke Zhigang, Zhu Lihui, Zhou Renyuan, et al. Improvement of impact toughness of improved T23 steel[J]. Shanghai Metal, 2022, 44(4): 49 − 54.
-
期刊类型引用(10)
1. 陈澄,尹红波,王成,倪大海,谢璐,曾超林. 钼铜载体与铝合金外壳的无压纳米银胶低温烧结强度. 半导体技术. 2025(01): 95-100 . 百度学术
2. 黄玺,张亮,王曦,陈晨,卢晓. 电子封装用纳米级无铅钎料的研究进展. 材料导报. 2024(23): 136-148 . 百度学术
3. 黄天,甘贵生,刘聪,马鹏,江兆琪,许乾柱,陈仕琦,程大勇,吴懿平. 电子封装低温互连技术研究进展. 中国有色金属学报. 2023(04): 1144-1178 . 百度学术
4. 官紫妍,吴丰顺,周龙早,李可为,丁立国,李学敏. 功率模块纳米银烧结技术研究进展. 电子工艺技术. 2023(04): 1-6 . 百度学术
5. 傅必成,方毅,张乐,李道会,齐放,宋利军,祝温泊. Fluxless bonding with silver nanowires aerogel in die-attached interconnection. China Welding. 2023(02): 32-41 . 百度学术
6. 杜伟,强军锋,余竹焕,高炜,阎亚雯,王晓慧,刘旭亮. 电子封装用纳米复合焊膏的研究进展. 材料导报. 2023(19): 162-172 . 百度学术
7. 龙旭,种凯楠,苏昱太. 烧结银细观孔隙结构对宏观力学性能的影响. 焊接学报. 2023(12): 15-20+27+137-138 . 本站查看
8. 齐苗苗,贺晓斌,刘双宝,杨婉春,祝温泊. Ag-Cu固溶体颗粒制备及低温烧结互连接头性能. 焊接学报. 2022(07): 97-101+119 . 本站查看
9. 杨婉春,胡少伟,祝温泊,李明雨. 低温烧结纳米银膏研究进展. 焊接学报. 2022(11): 137-146+169-170 . 本站查看
10. 王刘珏,瞿昀昊,吉勇. 颗粒形貌对银焊膏无压烧结行为的影响. 材料导报. 2022(S2): 347-351 . 百度学术
其他类型引用(10)