Study on the fatigue performance of bobbin tool friction stir welding of 6005A-T6 aluminum alloy
-
摘要: 通过对3.3 mm厚6005A-T6铝合金型材双轴肩搅拌摩擦焊接头进行疲劳试验,分析型材平行段宽度及厚度对试件疲劳性能的影响;并结合典型参数下焊接接头的宏观成形及其微观组织演变,揭示型材双轴肩搅拌摩擦焊接头的断裂行为. 结果表明,典型参数下(转速1 000 r/min、焊接速度100 mm/min、平行段宽度和厚度分别为11.8 mm和3.1 mm)接头的拉伸断裂位置位于后退侧热影响区;型材接头前进侧热力影响区晶粒组织的特征会影响型材疲劳裂纹产生与开动;疲劳断口扫描分析显示断口无明显缺陷,试件疲劳条带的扩展区和瞬断区具有典型的疲劳断裂特征,断裂发生在前进侧热影响区位置.
-
关键词:
- 搅拌摩擦焊 /
- 6005铝合金型材接头 /
- 疲劳裂纹扩展
Abstract: The fatigue tests of bobbin tool friction stir welding profile joints of 3.3 mm thick 6005A-T6 aluminum alloy with different dimensions were carried out to analyze the fatigue performance of the joints. Combined with the macroscopic forming and microstructure evolution of the joint under typical parameters, the fracture behavior of the bobbin tool friction stir welded joint was revealed. The results showed that the tensile fracture of the joint under typical parameters (rotation speed of 1 000 r/min, welding speed of 100 mm/min, width and thickness of parallel section of 11.8 mm and 3.1 mm) was located in the HAZ-RS. The grain structure characteristics in the TMAZ-AS of the joint could influence the fatigue cracks generation and propagation. The SEM analysis of fatigue fracture showed that no obvious defects were found. The fatigue cracks propagation and fracture zones showed typical fatigue fracture characteristics, and the fracture was located in the TMAZ-AS of the joint -
-
表 1 6005A-T6铝合金化学成分(质量分数,%)
Table 1 Chemical compositions of 6005A-T6 aluminum alloy
Mg Si Mn Cu Fe Al 0.4 ~ 0.7 0.5 ~ 0.9 0.5 0.3 0.35 余量 表 2 6005A-T6铝合金力学性能
Table 2 Mechanical properties of 6005A-T6 aluminum alloy
显微硬度H(HV) 抗拉强度Rm/MPa 断后伸长率A(%) 95 ~ 100 294 6.2 表 3 6005A-T6双轴肩FSW试样疲劳试验
Table 3 Fatigue results of BT-FSW for 6005 aluminum alloy
编号 平行段宽度
W/mm平行段厚度
T/mm最大应力
τmax/MPa最小应力
τmin /MPa平均载荷
F/kN疲劳寿命
N(周次)断裂位置 S16(B15) 11.80 3.00 130.00 13.00 2.5311 7498656 TMAZ-AS S19(A8) 11.80 3.10 125.00 12.50 2.514875 1054000 TMAZ-AS S7(B7) 11.80 3.10 120.00 12.00 2.39382 17559418 √(通过) S1(B11) 11.80 3.10 130.00 13.00 2.62647 13681376 √ S2(A11) 11.80 3.14 140.00 14.00 2.853004 418859 立筋型材熔合 S17(A5) 11.80 3.20 125.00 12.50 2.596 12582675 √ S15(B13) 11.80 3.20 135.00 13.50 2.80368 532253 立筋型材熔合口 S11(B9) 11.70 3.30 125.00 12.50 2.6544375 12106171 √ S20(A9) 11.70 3.20 120.00 12.00 2.47104 12 217 000 √ S26(A14) 11.70 3.10 125.00 12.50 2.4935625 13735625 √ S26(A14) 11.70 3.10 130.00 13.00 2.59325 500000 TMAZ-AS S21(A10) 11.70 3.10 150.00 15.00 2.992275 658814 TMAZ-AS S25(A13) 11.78 3.10 160.00 16.00 3.213584 173060 立筋型材熔合 -
[1] Zhang L, He H, Li S K, et al. Dynamic compression behavior of 6005 aluminum alloy aged at elevated temperatures[J]. Vacuum, 2018(155): 604 − 611.
[2] 刘杰, 刘威. 6005A-T6铝合金型材双轴肩搅拌摩擦焊接头组织与性能[J]. 焊接技术, 2016, 45(5): 73 − 75. Liu Jie, Liu Wei. Microstructure and mechanical properties of bobbin tool friction stir weld for 6005 aluminum alloy[J]. Welding Technology, 2016, 45(5): 73 − 75.
[3] 方远方, 张华. 铝合金型材的静轴肩倾斜搅拌摩擦焊接头性能研究[J]. 中国机械工程, 2021, 32(7): 815 − 820. Fang Yuanfang, Zhang Hua. Welding joint performance of inclined stationary shoulder friction stir welding for aluminum alloy sections[J]. China Mechanical Engineering, 2021, 32(7): 815 − 820.
[4] 刘楷, 许鸿吉, 邱劲松, 等. 不同板厚6005A-T6铝合金搅拌摩擦焊接头的组织与力学性能[J]. 焊接技术, 2022, 51(1): 38 − 41. Liu Kai, Xu Hongji, Qiu Jinsong, et al. Microstructure and mechanical properties of friction stir welded joint of 6005A-T6 aluminum alloy with different thickness[J]. Welding Technology, 2022, 51(1): 38 − 41.
[5] 侍光磊, 张璟瑜, 胡丰, 等. 6005A-T6铝合金型材双轴肩搅拌摩擦焊接头组织及力学性能[J]. 焊接, 2017(8): 21 − 25. Shi Guanglei, Zhang Jingyu, Hu Feng, et al. Microstructure and mechanical properties of bobbin tool frication stir welded joint of 6005A-T6 aluminum alloy profiles[J]. Welding & Joining, 2017(8): 21 − 25.
[6] 王磊, 付强, 安金岚, 等. 2A12-T4铝合金搅拌摩擦焊多区域疲劳裂纹扩展行为[J]. 焊接学报, 2021, 42(2): 24 − 29. Wang Lei, Fu Qiang, An Jinlan, et al. Multi-zone fatigue crack growth behavior of friction stir welding of 2A12-T4 aluminum alloy[J]. Transactions of the China Welding Institution, 2021, 42(2): 24 − 29.
[7] 白海青, 曹志峰, 王红莲, 等. 7050-T7451铝合金搅拌摩擦焊接头组织和性能与疲劳断裂[J]. 焊接, 2022(8): 33 − 38. Bai Haiqing, Cao Zhifeng, Wang Honglian, et al. Microstructure, properties and fatigue fracture of 7050-T7451 aluminum alloy friction stir welded joints[J]. Welding & Joining, 2022(8): 33 − 38.
[8] 佟建华, 张坤, 林松, 等. 搅拌摩擦焊和熔化极气体保护焊6082铝合金疲劳性能分析[J]. 焊接学报, 2015, 36(7): 109 − 112. Tong Jianhua, Zhang Kun, Lin Song, et al. Comparison of fatigue property of 6082 aluminum alloy joint by friction stir welding and metal inert-gas welding[J]. Transactions of the China Welding Institution, 2015, 36(7): 109 − 112.
[9] 戴启雷, 孟立春, 梁志芳, 等. A6N01-T5合金FSW和MIG焊接头疲劳裂纹扩展行为的对比[J]. 焊接学报, 2015, 36(9): 9 − 12. Dai Qilei, Meng Lichun, Liang Zhifang, et al. Comparison of fatigue crack propagation behavior of friction stir welded and metal inert-gas welded A6N01 joints[J]. Transactions of the China Welding Institution, 2015, 36(9): 9 − 12.
[10] 曹丽杰, 刘爱国, 李培超. 铝合金搅拌摩擦焊接头疲劳断裂行为分析[J]. 轻合金加工技术, 2010, 38(11): 45 − 50. Cao Lijie, Liu Aiguo, Li Peichao. Analysis on fatigue fracture behavior of friction stir welded aluminum alloy joints[J]. Light Alloy Fabrication Technology, 2010, 38(11): 45 − 50.
[11] Salvati E, Everaerts J, Kageyama K, et al. Transverse fatigue behaviour and residual stress analyses of double sided FSW aluminium alloy joints[J]. Fatigue & Fracture Mechanical of Engineering Materials & Structures, 2019, 42(1): 1980 − 1990.
[12] Di S S, Yang X Q, Fang D P, et al. The influence of zigzag-curve defect on the fatigue properties of friction stir welds in 7075-T6 Al alloy[J]. Materials Chemistry and Physics, 2007, 104(2-3): 244 − 248. doi: 10.1016/j.matchemphys.2007.01.023
[13] 姬书得, 孟祥晨, 黄永宪, 等. 搅拌头旋转频率对静止轴肩搅拌摩擦焊接头力学性能的影响规律[J]. 焊接学报, 2015, 36(1): 51 − 54. Ji Shude, Meng Xiangchen, Huang Yongxian, et al. Effect of rotational velocity of tool on mechanical properties of stationary shoulder friction stir welding[J]. Transactions of the China Welding Institution, 2015, 36(1): 51 − 54.
[14] Pao P S, Gill P S, Feng C R. On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy[J]. Scripta Materialia, 2000, 43(5): 391 − 396. doi: 10.1016/S1359-6462(00)00434-6
[15] 张欣盟, 何广忠, 王贝贝, 等. 氧化膜对6082铝合金搅拌摩擦焊接头疲劳性能的影响[J]. 材料研究学报, 2019, 33(4): 61 − 67. Zhang Xinmeng, He Guangzhong, Wang Beibei, et al. Influence of oxide film on fatigue property of friction stir welded 6082 Al alloy[J]. Chinese Journal of Materials Research, 2019, 33(4): 61 − 67.
[16] 金玉花, 吴永武, 王希靖, 等. 滚动轧制对铝合金搅拌摩擦焊接头性能的影响[J]. 焊接学报, 2019, 40(4): 50 − 54. Jin Yuhua, Wu Yongwu, Wang Xijing, et al. Effect of rolling on friction stir welded joints of aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(4): 50 − 54.
[17] 王希靖, 张杰, 牛勇, 等. 焊接速度对7050-T7451 铝合金搅拌摩擦焊接头疲劳性能的影响[J]. 宇航材料工艺, 2008, 38(4): 66 − 69. Wang Xijing, Zhang Jie, Niu Yong, et al. Effect of welding speed on microstructure and fatigue property of 7050-T7451 aluminum alloy by friction stir welding[J]. Aerospace Materials & Technology, 2008, 38(4): 66 − 69.
[18] 魏心海, 孙国芹. 搅拌摩擦焊接头疲劳断口分析[C]//北京力学会. 北京力学会第二十五届学术年会会议论文集, 2019: 494 − 496. Wei Haixin, Sun Guoqin. Analysis of fatigue fracture of friction stir welded joint[C]// Beijing Society of Theoretical and Applied Mechanics, Proceedings of the 25th Annual Conference of Beijing Society of Theoretical and Applied Mechanics, 2019: 494 − 496.
[19] Booth D, Sinclair I. Fatigue of friction stir welded 2024-T351 aluminum alloy[J]. Material Science Forum, 2002, 396(3): 1671 − 1676.
[20] 陈亚静, 孙国芹. 铝合金搅拌摩擦焊接头强化相对疲劳裂纹的影响[C]//北京力学会. 北京力学会第二十三届学术年会会议论文集, 2017: 473 − 475. Chen Yajing, Sun Guoqin. Influence of strengthening phases on fatigue crack of friction stir welded aluminum alloy joint[C]// Beijing Society of Theoretical and Applied Mechanics, Proceedings of the 23th Annual Conference of Beijing Society of Theoretical and Applied Mechanics, 2017: 473 − 475.
[21] 陈宁凯, 王威威, 付宁宁, 等. 铝合金车体双轴肩搅拌摩擦焊接头组织及力学性能研究[J]. 金属加工(热加工), 2022(8): 34 − 37. Chen Ningkai, Wang Weiwei, Fu Ningning, et al. Microstructure and mechanical properties of aluminium carbody bobbin tool friction stir welded[J]. MW Metal Forming, 2022(8): 34 − 37.
[22] 温泉, 李文亚, 王非凡, 等. 双轴肩搅拌摩擦焊接方法研究进展[J]. 航空制造技术, 2017(12): 16 − 23. Wen Quan, Li Wenya, Wang Feifan, et al. Research progress on bobbin tool friction stir welding[J]. Aeronautical Manufacturing Technology, 2017(12): 16 − 23.
[23] Li J Q, Liu H J. Effects of welding speed on microstructures and mechanical properties of AA2219-T6 welded by the reverse dual-rotation friction stir welding[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9-12): 2071 − 2083. doi: 10.1007/s00170-013-4812-5
[24] Wen Q, Li W Y, Gao Y J, et al. Numerical simulation and experimental investigation of band patterns in bobbin tool friction stir welding of aluminum alloy[J]. International Journal of Advanced Manufacturing Technology, 2019(100): 2679 − 2687.
[25] 徐海涛, 李静, 褚雪峰, 等. 返修工艺对6005-T6铝合金型材搅拌摩擦焊接头性能的影响[J]. 电焊机, 2020, 50(1): 102 − 104. doi: 10.7512/j.issn.1001-2303.2020.01.19 Xu Haitao, Li Jing, Zhu Xuefeng, et al. Influence of repair on properties of friction stir welding of 6005-T6 alloy profile joints[J]. Electric Welding Machine, 2020, 50(1): 102 − 104. doi: 10.7512/j.issn.1001-2303.2020.01.19
-
期刊类型引用(5)
1. 樊景博,田祎,任鑫博. 基于计算机视觉技术的焊接机器人定位精度分析. 微型电脑应用. 2021(02): 15-17 . 百度学术
2. 肖文波,何银水,袁海涛,马国红. 镀锌钢GMAW焊缝成形特征与焊枪方向同步实时检测. 焊接学报. 2021(12): 78-82+101 . 本站查看
3. 陈继传. 工艺改进型料槽机器人焊接工作站. 科技风. 2020(11): 172 . 百度学术
4. 洪磊,杨小兰,王保升,吕东升. 基于球面均匀分布的焊接机器人TCP标定方法. 焊接学报. 2020(08): 14-21+98 . 本站查看
5. 杨秀芝,张锐,王兴东,蒋宇辉,王子涵. 基于PSD的薄板焊接坡口信号识别系统. 焊接. 2020(10): 28-33+62-63 . 百度学术
其他类型引用(3)