Research progress on advanced joining technology of high-nitrogen steel
-
摘要: 高氮钢具有高强度、高韧性、耐磨损和耐腐蚀等独特优势,相关连接件已广泛用于医疗仪器和采矿器械等领域. 主要对近年来国内外有关高氮钢钨极气体保护焊、熔化极气体保护焊、激光焊与激光复合焊、搅拌摩擦焊和钎焊技术研究报道进行详细综述. 根据熔焊、固焊、钎焊3大分类,从保护气体、热输入、工艺参数等方面系统评述现有各类高氮钢焊接方法与工艺调控,并介绍了医疗器械、石油钻铤、装甲防护领域国内高氮钢材料的应用现状,最后指出现有高氮钢连接体系研究中存在的不足及展望,期望对高氮钢焊接、高强材料功能性连接等相关领域研究和应用提供参考信息和理论依据.Abstract: High nitrogen steel offers unique benefits including high strength, toughness, abrasion resistance, and corrosion resistance. The connectors have been widespread application in military equipment, medical instruments, and mining devices. The major domestic and foreign research reports in recent years on gas tungsten arc welding, gas metal arc welding, laser welding and laser-arc hybrid welding, friction stir welding and brazing of high nitrogen steel are summarized in detail.According to the three main classifications of fusion welding, solid-state welding and brazing, the paper systematically reviews the existing various types of high-nitrogen steel welding methods and process control from the aspects of shielding gas, heat input,process parameters and others, introducing the current status of the application of high-nitrogen steel materials in the field of medical devices, oil drilling collars, and armor protection. Finally, the review points out the shortcomings and aspects of the existing research on high nitrogen steel joining systems, expecting to provide information and theoretical basis for the research and application in the fields of high nitrogen steel welding, functional joining of high-strength materials and other related fields.
-
Keywords:
- high-nitrogen steel /
- welding process /
- joining /
- mechanical properties
-
0. 序言
汽车轻量化是当今汽车制造业关注的热点. 高强钢已成为一种汽车轻量化广泛使用的材料[1-3]. 电阻点焊是高强钢板材主要连接方式之一,但存在应力集中及疲劳性能差的弱点[4-5]. 然而胶接点焊作为一种新型复合连接技术,能够改善应力分布,提高接头的剥离强度,也避免了粘接接头因受冲击发生脆性断裂所带来的危险性,具有广泛的应用前景[6-7].
针对胶接点焊过程中存在的问题国内外学者开展了大量研究. 孙海涛等人[8-9]通过对比分析双相钢胶接点焊与电阻点焊接头力学性能,发现制定胶接点焊电流时应比电阻点焊偏低. 常保华等人[10]采用弹塑性有限元分析方法,对高、低弹性模量胶接剂的胶接点焊接头强度开展研究,发现随着焊点间距增大两种接头的强度均降低. Xu等人[11]研究表明大搭接宽度的胶接点焊接头静力学性能优于小搭接宽度的胶接点焊接头. 游敏等人[12]通过建立弹塑性胶接点焊接头的有限元模型,发现胶层的弹性模量对接头强度影响较大,建议采用弹性模量适中的胶接剂. Khan等人[13]采用Box-Behnken Design(BBD)方法设计6061铝合金胶接点焊的响应面试验,研究了焊接时间、焊接电流、电极压力及其交互作用对接头力学性能的影响,借助响应面模型得到了最优工艺参数组合. 张龙等人[14]对比分析了钛合金胶接点焊和电阻点焊接头的力学性能,发现小电流情况下胶接点焊接头强度不足,熔核区断口呈韧性断裂特征;大电流情况下,接头强度较高,呈现出韧性断裂与准解理断裂特征. 然而,国内外学者综合考虑多个参数来优化高强钢胶接点焊工艺并分析能量吸收值和失效载荷与断裂形式关系的文章鲜有报道.
采用BBD试验设计法,开展DP780高强钢胶接点焊工艺试验,并建立高强钢胶接点焊能量吸收值、失效载荷预测模型,针对焊接电流、焊接时间、电极压力及其交互作用对能量吸收值以及失效载荷的影响进行研究,并因此确定胶接点焊工艺的最优参数,借助扫描电子显微镜对胶接点焊接头的断口失效形貌进行分析.
1. 试验方法
1.1 试件制备
胶接点焊工艺试验材料采用1.2 mm厚的DP780高强钢,其化学成分如表1所示,试件尺寸为100 mm×25 mm×1.2 mm. 试件的搭接区域尺寸为25 mm × 25 mm,胶接点焊搭接试样如图1所示. 试验采用中频逆变直流点焊机. 试验前先用砂纸对板材进行打磨,后用无水乙醇进行清洗. 采用透胶胶接点焊工艺,借助胶接点焊搭接夹具进行涂胶,保持胶层厚度为0.2 mm. 待完成焊接后,将焊接试件放入25 ℃恒温箱中固化24 h. 试验中使用的胶接剂为DP460环氧树脂.
表 1 DP780高强钢的化学成分(质量分数,%)Table 1. Chemical compositions of DP780 high strength steelC Si Mn P Cr Ni Al Cu Fe 0.2 0.24 1.91 0.019 0.2 0.024 0.038 0.026 余量 借助MTS电液伺服材料试验机对固化后的焊接试件进行准静态拉伸试验,获得不同参数下接头的载荷位移曲线. 在试件两端贴上25 mm × 25 mm ×1.2 mm的DP780高强钢垫片,以防止拉伸过程中产生扭矩. 为保证试验的准确性以及避免人为因素引起的误差,每组参数下进行5次试验. 接头的拉伸速率设置为5 mm/min.
1.2 试验设计
1.2.1 试验方案
试验采用BBD方法设计试验方案,以焊接电流X1、焊接时间X2、电极压力X3及各因素间交互作用为影响因素,接头的能量吸收值E(即接头载荷-位移曲线中载荷对位移的积分)、失效载荷Y为预测目标值,在进行胶接点焊的预试验后,确定如表2所示的各因素水平及范围. 试验方案及结果如表3所示.
表 2 因素水平及范围Table 2. Factor level and scope因素编码值 焊接电流
I/kA焊接时间
t/ms电极压力
p/MPaX1 X2 X3 −1 7 100 0.3 0 8 125 0.35 1 9 150 0.4 表 3 试验方案及结果Table 3. Test scheme and results组号 焊接电流 I/kA 焊接时间 t/ms 电极压力 p/MPa 能量吸收值 E/J 失效载荷 Y/N 1 7 125 0.4 35.65 15 638 2 8 100 0.4 34.29 14 648 3 8 150 0.3 95.90 17 570 4 8 125 0.35 67.77 16 050 5 9 125 0.4 64.47 16 245 6 9 125 0.3 55.55 15 823 7 9 150 0.35 85.66 17 400 8 9 125 0.3 90.09 16 744 9 7 100 0.35 41.33 16 244 10 8 100 0.3 49.25 15 708 11 9 100 0.35 52.81 15 545 12 8 150 0.4 79.92 16 385 13 8 125 0.35 63.35 15 513 14 8 125 0.35 58.45 15 605 15 7 125 0.3 35.21 15 682 1.2.2 响应面模型的建立
设定显著性水平为0.05,对试验数据采用最小二乘法进行回归方程拟合,通过方差分析检验模型的显著性,保留所有的单因素以及显著性较强的交互作用,对回归方程进行优化,优化后的结果如下
$$ \begin{aligned} E = 64.13 + 15.66{X_1} + 17.42{X_2} - 7.02{X_3} - 6.51{X_1}{X_3} - 6.54{X_1}^2 \end{aligned} $$ (1) $$ \begin{aligned} Y =16\;053.33 + 318.37{X_1} + 629.12{X_2} - 348.50{X_3} + 569{X_1}{X_2} \end{aligned} $$ (2) 其中式(1)为能量吸收值优化模型,式(2)为失效载荷优化模型. 表4为所得模型方差分析.(Prob > F) < 0.05时,认为该指标显著. 从 表4可以看出,能量吸收值、失效载荷两模型显著性高,回归方程能够很好的拟合真实曲面. 此外,单因素对能量吸收值影响程度分别为:焊接时间最为显著,焊接电流次之,电极压力影响最小. 单因素对接头失效载荷影响显著程度分别为:焊接时间影响最为显著,电极压力次之,焊接电流影响最弱.
表 4 方差分析Table 4. Variance analysis响应值 因素 平方和 Ss 自由度 df 均方差 MS F值 Prob > F 能量吸收值 模型 5 112.48 4 1 022.50 14.64 0.000 4 X1 1 962.20 1 1 962.20 28.09 0.000 5 X2 2 427.30 1 2 427.30 34.74 0.000 2 X3 393.68 1 393.68 5.63 0.041 6 X1X3 169.78 1 169.78 2.43 0.153 5 X12 159.52 1 159.52 2.28 0.165 1 失拟项 827.85 8 103.45 4.76 0.221 8 失效载荷 模型 6.244 × 106 4 1.561 × 106 8.98 0.002 4 X1 8.109 × 105 1 8.109 × 105 4.66 0.056 2 X2 3.166 × 106 1 3.166 × 106 18.21 0.001 6 X3 9.716 × 105 1 9.716 × 105 5.59 0.039 7 X1X2 1.295 × 106 1 1.295 × 106 7.45 0.021 2 失拟项 1.574 × 106 8 1.968 × 105 2.39 0.328 8 1.2.3 参数优化与验证试验
胶接点焊接头的静力学性能与焊点质量和粘接质量都有密切关系,要优化胶接点焊工艺参数仅考虑接头的失效载荷是不全面的. 因此以能量吸收值为最大目标,失效载荷设置一个较大的目标值,以此为目标对响应面模型进行最优计算,响应面模型所得的最优工艺参数为:焊接电流9 kA、焊接时间150 ms、电极压力0.3 MPa. 在试验过程中发现,发生飞溅的接头,其失效位移和能量吸收值明显降低,因此会对接头的力学性能造成负面影响. 在前述分析中,焊接时间对能量吸收值影响最为显著,而对失效载荷影响最弱,因此为优化胶接点焊工艺参数,应先保证在较长焊接时间的前提下尽量增大焊接电流. 经过多次焊接试验发现,当焊接电流降至8 kA时接头不发生飞溅,最终确定最优工艺参数为8 kA、焊接时间150 ms、电极压力0.3 MPa.
对得到的胶焊工艺参数进行试验验证,借助MTS型材料试验机测试该组接头的力学性能并计算其能量吸收值,对试验结果的平均值进行计算,5个胶接点焊接头失效模式均为焊核拔出. 试验结果为:能量吸收值93.22 J、失效载荷17 688.46 N. 该组参数下多元回归方程预测值为:能量吸收值88.57 J、失效载荷17 030.96 N. 验证试验的实测值与能量吸收值、失效载荷模型预测值误差分别为4.99%,3.72%. 验证试验结果表明,非线性多元回归模型与实际拟合良好,因此通过模型来预测接头的能量吸收值和失效载荷并对胶接点焊工艺参数进行优化是可行的.
2. 试验结果与分析
2.1 因素影响分析
能量吸收值是失效载荷和失效位移的综合评价标准,为拉剪过程中载荷对位移的积分,可以很好的反映接头的缓冲吸震能力. 图2为单因素及交互作用对能量吸收值的影响规律. 由图2a可知,能量吸收值随焊接电流、焊接时间的增大而增加,但随着焊接电流的继续增加,接头的缓冲吸震能力增幅逐渐减小. 这是由于焊接时间的延长以及在焊接电流增值较小时均有利于热输入量的增加,进而接头强度和失效位移均增加,但在实际焊接过程中,随着焊接电流的进一步增大,焊接中出现飞溅,虽然发生飞溅的接头在强度上有所提高,但接头的失效位移会因此减小,导致接头缓冲吸震能力增长缓慢. 电极压力对接头能量吸收值的影响呈负相关性,在焊接过程中发现,在较大的电极压力下进行胶接点焊会加剧胶层从板材边缘的流出,致使胶层实际厚度减小,造成接头的能量吸收值降低. 当焊接时间为125 ms时,焊接电流与电极压力对能量吸收值的交互影响如图2b所示. 由图2b可以看出,大焊接电流搭配小电极压力可以得到缓冲吸震最优的接头且等高线图左下角等高线最为稠密,说明在电极压力较小时,增大焊接电流可以得到接头能量吸收值的显著提高. 当焊接电流较小时,电极压力的改变对能量吸收值的提高影响不显著,此参数组合在焊接过程中不能获得力学性能较优的接头. 反之,当焊接电流大于8 kA时,电极压力的改变对能量吸收值的提高影响逐渐显著. 考虑到这两项因素的交互作用影响,为得到能量吸收值较优接头应同时减小电极压力并增大焊接电流.
图3为单因素及交互作用对失效载荷的影响. 由图3a可知,焊接电流和焊接时间对失效载荷的影响呈正相关性,电极压力对失效载荷的影响呈负相关性. 在一定范围内,焊接电流和焊接时间的增大导致了热输入量的增加,促使熔核的快速成形. 随着电极压力的增加,电极与试件之间的接触面积也逐渐增大,引起接触电阻和电流密度减小,导致热输入量减小. 此外,在实际操作中发现在较大的电极压力下进行胶接点焊,板材容易发生翘曲变形,减弱接头的力学性能. 将电极压力固定在0.35 MPa,焊接电流与焊接时间对失效载荷的交互影响如图3b所示. 当焊接时间为100 ~ 110 ms时,失效载荷随焊接电流的增大而缓慢减小,而当焊接电流为7 ~ 8 kA,接头的失效载荷随焊接时间的延长而缓慢增加. 然而失效载荷沿右上顶角陡增,即在焊接时间大于130 ms时,同时延长焊接时间和增大焊接电流可直接获得较优的力学性能接头,但并不是越大的焊接电流与焊接时间对提高接头力学性能更有利,由于胶接剂的存在,在焊接时接触电阻较大,过大的焊接电流与焊接时间将引起高热量迅速聚集,引起熔核内部的部分金属液被带走,产生飞溅. 综上,为提高接头的失效载荷,应在不产生飞溅的前提下尽可能使用大焊接电流与长焊接时间组合.
2.2 断口SEM形貌分析
对15组工艺参数组合下的胶接点焊试件进行拉伸-剪切试验后,发现第3,4,5,10,11,12,13,14组接头发生焊核拔出失效,第1,2,6,9,15组接头失效形式为界面撕裂,其余两组在焊接过程中发生飞溅. 通过对比焊核拔出和界面撕裂两类失效形式接头的能量吸收值和失效载荷,可见失效形式为焊核拔出接头的能量吸收值、失效载荷普遍大于界面撕裂接头. 为辨析其原因,借助扫描电子显微镜对两种失效形式的断口进行扫描电镜(SEM)试验,分析接头断裂类型和原因.
图4为第3组接头的断口宏观与微观放大形貌.可以观察到,图4中各区域均分布大量且大小不等的圆形或椭圆形韧窝. A区域为熔核开始断裂处,该区域韧窝开口未发生明显改变,裂纹沿热影响区扩展到B区域,但B区域韧窝沿应力方向被拉长且开口具有一定方向性,说明区域A在断裂时受正应力作用,B区域在断裂过程中结合面与拉剪力存在一定角度,熔核发生偏转. C区域中韧窝周边还存在凸起的撕裂棱,但没有解理台阶,撕裂棱均匀细致. 图4中各区域断口表现出典型的韧性断裂特征. 综上所述,该种失效形式的接头熔核质量较好,裂纹不易沿结合面扩展,避免了因接头强度不足而内部发生断裂,因此具有良好的缓冲吸震效果.
图5为第9组接头的断口宏观与微观放大形貌. 从图5b ~ 5c可以清晰的看到河流花样与解理台阶,是典型的解理断裂特征,但B区域解理台阶更大,解理河流花样更为复杂. 由于解理裂纹在扩展的中上游,小解理台阶面倾向于汇合在一起形成较大台阶,这表明B区域为裂纹扩展的第二阶段. 在A区域解理台阶面周围与C区域熔核中心处均存在韧窝,这表明在该区域存在大量韧窝形核的位置,在拉剪力的作用下容易产生显微裂纹,但韧窝未有明显的塑性变形就发生了断裂,因此该处接头强度较低,导致缓冲吸震能力弱. 由断口分析可知,界面撕裂断口形貌呈现出解理断裂为主,韧性断裂为辅的特征,且裂纹沿结合面进行扩展,造成接头强度不足,接头内部发生界面撕裂失效.
3. 结论
(1)基于BBD方法建立DP780高强钢胶接点焊接头能量吸收值与失效载荷的多元非线性回归模型,并通过试验验证了模型的可靠性,确定了1.2 mm厚的DP780高强钢胶接点焊最优工艺参数为焊接电流8 kA、焊接时间150 ms、电极压力0.3 MPa.
(2)焊接时间、电极压力以及焊接电流3个影响焊接质量的因素中,焊接时间对胶接点焊接头的能量吸收值、失效载荷的影响最为显著. 其中,焊接电流和焊接时间对能量吸收值和失效载荷的影响均呈正相关性,而电极压力对能量吸收值和失效载荷的影响呈负相关性. 其次,焊接电流与电极压力的交互作用对能量吸收值的影响显著;焊接时间与焊接电流的交互作用对失效载荷的影响显著.
(3) DP780高强钢胶接点焊接头存在两种静拉伸失效形式:焊核拔出和界面撕裂. 失效形式为焊核拔出的接头对应较高的能量吸收值、失效载荷. 焊核拔出的断口呈现出韧性断裂特征;界面撕裂的断口呈现以解理断裂为主、韧性断裂为辅的特征.
-
-
[1] 安瑞金, 赵琳, 田志凌, 等. 医疗器械用高氮不锈钢薄板激光焊接接头的组织与性能[J]. 应用激光, 2007, 27(6): 41 − 44. An Ruijin, Zhao Lin, Tian Zhiling, et al. Microstructure and mechanical properties of welded joint of high nitrogen austenite stainless steel thin plates for medical devices[J]. Applied Laser, 2007, 27(6): 41 − 44.
[2] Svyazhin A, Kaputkina L, Smarygina I, et al. Nitrogen steels and high-nitrogen steels: industrial technologies and properties[J]. Steel Research International, 2022, 93(9): 2200160.
[3] Radice S, Impergre A, Fischer A, et al. Corrosion resistance of the nickel‐free high‐nitrogen steel FeCrMnMoN0.9 under simulated inflammatory conditions[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2021, 109(6): 902 − 910. doi: 10.1002/jbm.b.34754
[4] Li S, Zhang C S, Lu J P, et al. A review of progress on high nitrogen austenitic stainless-steel research[J]. Materials Express, 2021, 11(12): 1901 − 1925. doi: 10.1166/mex.2021.2109
[5] Li M, Wu H, Wang Y, et al. Immobilization of heparin/poly-L-lysine microspheres on medical grade high nitrogen nickel-free austenitic stainless steel surface to improve the biocompatibility and suppress thrombosis[J]. Materials Science and Engineering:C, 2017, 73: 198 − 205. doi: 10.1016/j.msec.2016.12.070
[6] Lang Y P, Qu H P, Chen H T, et al. Research progress and development tendency of nitrogen-alloyed austenitic stainless steels[J]. Journal of Iron and Steel Research International, 2015, 22(2): 91 − 98. doi: 10.1016/S1006-706X(15)60015-2
[7] Li J, Li H, Peng W, et al. Effect of simulated welding thermal cycles on microstructure and mechanical properties of coarse-grain heat-affected zone of high nitrogen austenitic stainless steel[J]. Materials Characterization, 2019, 149: 206 − 217. doi: 10.1016/j.matchar.2019.01.030
[8] Qin Y, Li J, Herbig M. Microstructural origin of the outstanding durability of the high nitrogen bearing steel X30CrMoN15-1[J]. Materials Characterization, 2020, 159: 110049. doi: 10.1016/j.matchar.2019.110049
[9] Zhao Y, Sun Y, Li X, et al. In-situ observation of δ ↔ γ phase transformations in duplex stainless steel containing different nitrogen contents[J]. ISIJ International, 2017, 57(9): 1637 − 1644. doi: 10.2355/isijinternational.ISIJINT-2017-125
[10] 汤旭炜. Mn18Cr18N护环钢工艺的基础研究[D]. 北京: 北京科技大学, 2017. Tang Xuwei. Fundamental study on process of Mn18Cr18N retaining ring steel[D]. Beijing: University of Science and Technology Beijing, 2017.
[11] 孙世成. 高氮无镍奥氏体不锈钢的微观结构和力学性能研究[D]. 吉林: 吉林大学, 2014. Sun Shicheng. Microstructure and mechanical properties of high nitrogen nickel-free austenitic stainless steel[D]. Jilin: Jilin University, 2014.
[12] Tan H, Jiang Y, Deng B, et al. Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750[J]. Materials Characterization, 2009, 60(9): 1049 − 1054. doi: 10.1016/j.matchar.2009.04.009
[13] Ma Z H, Chen D G, Liu H W, et al. Microstructure and mechanical properties of welding joints of high nitrogen steel by hybrid laser-arc welding[J]. Applied Mechanics and Materials, 2014, 496: 444 − 447.
[14] Wang L, Li Y, Ding J, et al. Problems in welding of high nitrogen steel: A Review[J]. Metals, 2022, 12(8): 1273.
[15] 张志强, 荆洪阳, 徐连勇, 等. 铁素体/奥氏体双相不锈钢焊接接头组织和性能的研究进展[J]. 材料热处理学报, 2020, 41(5): 13 − 27. Zhang Zhiqiang, Jing Hongyang, Xu Lianyong, et al. Research progress on microstructure and properties of welded joint of ferrite/austenite duplex stainless steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(5): 13 − 27.
[16] Zhao L, Tian Z L, Peng Y, et al. Control of nitrogen content and porosity in gas tungsten arc welding of high nitrogen steel[J]. Science and Technology of Welding and Joining, 2009, 14(1): 87 − 92. doi: 10.1179/136217108X343939
[17] Lu S, Dong W, Li D, et al. Numerical study and comparisons of gas tungsten arc properties between argon and nitrogen[J]. Computational Materials Science, 2009, 45(2): 327 − 335. doi: 10.1016/j.commatsci.2008.10.010
[18] Hosseini V A, Wessman S, Hurtig K, et al. Nitrogen loss and effects on microstructure in multipass TIG welding of a super duplex stainless steel[J]. Materials & Design, 2016, 98: 88 − 97.
[19] 周杰, 张明渝, 李志洋, 等. 高氮不锈钢与675高强钢焊接接头微观组织与力学性能[J]. 焊接, 2022(2): 6 − 10. Zhou Jie, Zhang Mingyu, Li Zhiyang, et al. Microstructure and mechanical properties of welded joint between high nitrogen stainless steel and 675 high strength steel[J]. Welding & Joining, 2022(2): 6 − 10.
[20] 杨武林, 陈东高, 王有祁, 等. 中厚度高氮钢双丝MIG焊接头组织和性能研究[J]. 兵器材料科学与工程, 2013, 36(5): 100 − 102. Yang Wulin, Chen Donggao, Wang Youqi, et al. Microstructure and mechanical properties of MIG welded joint of mid-thickness high nitrogen steel[J]. Ordnance Material Science and Engineering, 2013, 36(5): 100 − 102.
[21] Li J G, Li H, Liang Y, et al. The microstructure and mechanical properties of multi-strand, composite welding-wire welded joints of high nitrogen austenitic stainless steel[J]. Materials, 2019, 12(18): 2944. doi: 10.3390/ma12182944
[22] 杜挽生, 彭云, 赵琳, 等. 高氮奥氏体不锈钢MIG焊接头的组织和性能[J]. 焊接, 2008(10): 25 − 29. Du Wansheng, Peng Yun, Zhao Lin, et al. Microstructure and mechanical properties of MIG welded joint of high nitrogen austenite stainless steel[J]. Welding & Joining, 2008(10): 25 − 29.
[23] 明珠, 王克鸿, 张迎迎, 等. 高氮奥氏体钢与603钢焊接结构疲劳性能的对比研究[J]. 焊接技术, 2016, 45(11): 28 − 30. Ming Zhu, Wang Kehong, Zhang Yingying, et al. Comparative study on fatigue properties of welded structures of high nitrogen austenitic steel and 603 steel[J]. Welding Technology, 2016, 45(11): 28 − 30.
[24] 冯兆龙. 高氮奥氏体不锈钢仰焊焊接接头组织与性能研究[J]. 焊接, 2010(12): 43 − 45. Feng Zhaolong. Microstructure and properties of high nitrogen stainless steel welded joint by upward welding[J]. Welding & Joining, 2010(12): 43 − 45.
[25] Zhao L, Tian Z L, Peng Y, et al. Porosity and nitrogen content of weld metal in laser welding of high nitrogen austenitic stainless steel[J]. ISIJ international, 2007, 47(12): 1772 − 1775. doi: 10.2355/isijinternational.47.1772
[26] 李永杰. 气孔和裂纹对高氮钢光纤激光焊接接头力学性能的影响[J]. 应用激光, 2017, 37(5): 681 − 686. Li Yongjie. Effects of air holes and cracks on the mechanical properties of high nitrogen steel fiber laser welded joints[J]. Applied Laser, 2017, 37(5): 681 − 686.
[27] Bai D, Liu F, Zhang H, et al. Corrosion behavior and passivation protection mechanism on different zone of high-nitrogen steel weld[J]. Materials Letters, 2021, 10(1): 300.
[28] Ning J, Na S J, Wang C H, et al. A comparison of laser-metal inert gas hybrid welding and metal inert gas welding of high-nitrogen austenitic stainless steel[J]. Journal of Materials Research and Technology, 2021, 13: 1841 − 1854. doi: 10.1016/j.jmrt.2021.05.113
[29] 方乃文, 黄瑞生, 闫德俊, 等. 低镍含氮奥氏体不锈钢激光-电弧焊电弧特性及组织性能[J]. 焊接学报, 2021, 42(1): 70 − 75. Fang Naiwen, Huang Ruisheng, Yan Dejun, et al. Effect of welding heatinput on microstructure and properties of MAG welded joint for low nickel high nitrogen austenitic stainless steel[J]. Transactions of the China Welding Institution, 2021, 42(1): 70 − 75.
[30] 王健, 刘天生. 高氮钢与铝板的爆炸焊接可行性探究[J]. 兵器材料科学与工程, 2016, 39(2): 98 − 102. Wang Jian, Liu Tiansheng. Explosion welding feasibility of high nitrogen steel and aluminum plate[J]. Ordnance Material Science and Engineering, 2016, 39(2): 98 − 102.
[31] Liu Y, Li C, Hu X, et al. Explosive welding of copper to high nitrogen austenitic stainless steel[J]. Metals, 2019, 9(3): 339. doi: 10.3390/met9030339
[32] Li H B, Jiang Z H, Feng H, et al. Microstructure, mechanical and corrosion properties of friction stir welded high nitrogen nickel-free austenitic stainless steel[J]. Materials & Design, 2015, 84: 291 − 299.
[33] Zhang H, Wang D, Xue P, et al. Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel[J]. Materials & Design, 2016, 110: 802 − 810.
[34] Zhang H, Wang D, Xue P, et al. Achieving ultra-high strength friction stir welded joints of high nitrogen stainless steel by forced water cooling[J]. Journal of Materials Science & Technology, 2018, 34(11): 2183 − 2188.
[35] Yuan X J, Kang C Y, Kim M B. Microstructure and XRD analysis of brazing joint for duplex stainless steel using a Ni-Si-B filler metal[J]. Materials Characterization, 2009, 60(9): 923 − 931. doi: 10.1016/j.matchar.2009.03.004
[36] Zhu W W, Zhang H, Guo C H, et al. Wetting and brazing characteristic of high nitrogen austenitic stainless steel and 316L austenitic stainless steel by Ag-Cu filler[J]. Vacuum, 2019, 166: 97 − 106. doi: 10.1016/j.vacuum.2019.04.064
[37] Qiang W, Wang K H. Shielding gas effects on double-sided synchronous autogenous GTA weldability of high nitrogen austenitic stainless steel[J]. Journal of Materials Processing Technology, 2017, 250: 169 − 181. doi: 10.1016/j.jmatprotec.2017.07.021
[38] Mohammed R, Reddy G M, Rao K S. Effect of filler wire composition on microstructure and pitting corrosion of nickel free high nitrogen stainless steel GTA Welds[J]. Transactions of the Indian Institute of Metals, 2016, 69(10): 1919 − 1927. doi: 10.1007/s12666-016-0851-6
[39] Liu Z, Fan C, Ming Z, et al. Optimization of shielding gas composition in high nitrogen stainless steel gas metal arc welding[J]. Journal of Manufacturing Processes, 2020, 58: 19 − 29. doi: 10.1016/j.jmapro.2020.08.001
[40] 方乃文, 黄瑞生, 杨义成, 等. 填充金属对08Cr19MnNi3Cu2N低镍含氮奥氏体不锈钢MAG焊接头组织性能的影响[J]. 机械制造文摘(焊接分册), 2019, 6: 20 − 25. Fang Naiwen, Huang Ruisheng, Yang Yicheng, et al. Effect of filler metal on microstructure and properties of welded joint for 08Cr19MnNi3Cu2N austenitic stainless steel with low nickel and nitrogen[J]. Welding Digest of Machinery Manufacturing, 2019, 6: 20 − 25.
[41] 明珠, 王克鸿, 王伟, 等. 焊丝含氮量及焊接电流对高氮钢焊缝组织和性能影响[J]. 焊接学报, 2019, 40(1): 104 − 108. Ming Zhu, Wang Kehong, Wang Wei, et al. Effects of nitrogen content and welding current on microstructure and properties of the weld of high nitrogen austenite steel[J]. Transactions of the China Welding Institution, 2019, 40(1): 104 − 108.
[42] Keskitalo M, Mäntyjärvi K, Sundqvist J, et al. Laser welding of duplex stainless steel with nitrogen as shielding gas[J]. Journal of Materials Processing Technology, 2015, 216: 381 − 384. doi: 10.1016/j.jmatprotec.2014.10.004
[43] Lai R, Cai Y, Wu Y, et al. Influence of absorbed nitrogen on microstructure and corrosion resistance of 2205 duplex stainless steel joint processed by fiber laser welding[J]. Journal of Materials Processing Technology, 2016, 231: 397 − 405. doi: 10.1016/j.jmatprotec.2016.01.016
[44] 冯志鹏, 刘凤德, 刘双宇, 等. 激光功率对高氮钢激光焊接焊缝组织和性能的影响[J]. 应用激光, 2015, 35(5): 564 − 568. Feng Zhipeng, Liu Fengde, Liu Shuangyu, et al. Influence of laser power on microstructure and properties of high nitrogen stainless steel with laser welding[J]. Applied Laser, 2015, 35(5): 564 − 568.
[45] Berezovskaya V V, Berezovskiy A V, Hilfi D H. Laser welded joints of high-nitrogen austenitic steels: Microstructure and Properties[J]. Solid State Phenomena, 2018, 284: 344 − 350. doi: 10.4028/www.scientific.net/SSP.284.344
[46] Cui B, Luo T, Feng M. Effect of nitrogen content on the microstructure and properties of the laser-arc hybrid welding joint of high nitrogen steel[J]. Optik, 2021, 243: 167478. doi: 10.1016/j.ijleo.2021.167478
[47] Li X, Bai D, Wang Y, et al. High-nitrogen steel laser-arc hybrid welding in vibration condition[J]. Materials Science and Technology, 2019, 36(4): 434 − 442.
[48] Bai D, Yang Z, Chen M, et al. Study on corrosion mechanism of high-nitrogen steel laser-arc hybrid welded joints[J]. Materials Research Express, 2020, 7(10): 106531. doi: 10.1088/2053-1591/abc372
[49] Li H, Yang S, Zhang S, et al. Microstructure evolution and mechanical properties of friction stir welding super-austenitic stainless steel S32654[J]. Materials & Design, 2017, 118: 207 − 217.
[50] Zhang H, Xue P, Wang D, et al. Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel[J]. Journal of Materials Science & Technology, 2019, 35(7): 1278 − 1283.
[51] Du D, Fu R, Li Y, et al. Gradient characteristics and strength matching in friction stir welded joints of Fe-18Cr-16Mn-2Mo-0.85N austenitic stainless steel[J]. Materials Science and Engineering:A, 2014, 616: 246 − 251. doi: 10.1016/j.msea.2014.08.012
[52] Zhu W, Jiang H, Zhang H, et al. Microstructure and strength of high nitrogen steel joints brazed with Ni-Cr-B-Si filler[J]. Materials Science and Technology, 2017, 34(8): 926 − 833.
[53] Wang X X, Li Z F, Gao D, et al. Microstructure and joint properties of high-nitrogen steel brazed by AgCuNi filler metal[J]. International Journal of Modern Physics B, 2022, 36(5): 2250045. doi: 10.1142/S021797922250045X
[54] Dong F Y, Zhang P, Pang J C, et al. Microstructure and mechanical properties of high-nitrogen austenitic stainless steels subjected to Equal-Channel angular pressing[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(2): 140 − 149. doi: 10.1007/s40195-016-0370-9
[55] Li J Y, Liu H N, Huang P W. Effects of pre-precipitation of Cr2N on microstructures and properties of high nitrogen stainless steel[J]. Journal of Central South University, 2012, 19(5): 1189 − 1195. doi: 10.1007/s11771-012-1127-x
[56] 马良超, 马冰, 王大锋, 等. 保护气配比对高氮钢焊丝接头组织性能的影响[J]. 兵器材料科学与工程, 2021, 44(1): 59 − 62. Ma Liangchao, Ma Bing, Wang Dafeng, et al. Effects of shielding gas ratio on microstructure and properties of high nitrogen steel welded joint[J]. Ordnance Material Science and Engineering, 2021, 44(1): 59 − 62.
[57] Liu Z, Fan C L, Ming Z, et al. Gas metal arc welding of high nitrogen stainless steel with Ar-N2-O2 ternary shielding gas[J]. Defence Technology, 2021, 17(3): 923 − 931. doi: 10.1016/j.dt.2020.05.021
[58] Ma Y, Lü X, Fang N, et al. Research on microstructure evolution of deposited metal of low nickel high nitrogen austenitic stainless steel[J]. Advances in Materials Science and Engineering, 2021, 2021: 7655423.
[59] Woo I, Kikuchi Y. Weldability of high nitrogen stainless steel[J]. ISIJ International, 2002, 42(12): 1334 − 1343. doi: 10.2355/isijinternational.42.1334
[60] Bo C, Hong Z, Fengde L. Effects of shielding gas composition on the welding stability, microstructure and mechanical properties in laser-arc hybrid welding of high nitrogen steel[J]. Materials Research Express, 2018, 5(9): 096513. doi: 10.1088/2053-1591/aad6c5
[61] Kumar N, Arora N, Goel S K, et al. A comparative study of microstructure and mechanical properties of 21-4-N steel weld joints using different filler materials[J]. Materials Today:Proceedings, 2018, 5(9): 17089 − 17096. doi: 10.1016/j.matpr.2018.04.116
[62] Wang J Y, Qi T, Zhong C L, et al. Study on seam nitrogen behavior of high nitrogen steel hybrid welding[J]. Optik, 2021, 242: 167026. doi: 10.1016/j.ijleo.2021.167026
[63] Liu Z, Fan C, Chen C, et al. Design and evaluation of nitrogen-rich welding wires for high nitrogen stainless steel[J]. Journal of Materials Processing Technology, 2021, 288: 116885. doi: 10.1016/j.jmatprotec.2020.116885
[64] 荆皓, 王克鸿, 强伟, 等. 氮含量对高氮钢PMIG焊接头组织和性能的影响[J]. 焊接学报, 2017, 38(4): 95 − 98. Jing Hao, Wang Kehong, Qiang Wei, et al. Influence of N-content on microstructure and mechanical properties of PMIG welding joints of high nitrogen steel[J]. Transactions of the China Welding Institution, 2017, 38(4): 95 − 98.
[65] 明珠, 王克鸿, 王伟, 等. 焊丝成分对高氮不锈钢GMAW稳定性及熔滴过渡行为的影响[J]. 焊接学报, 2018, 39(7): 24 − 28. Ming Zhu, Wang Kehong, Wang Wei, et al. Effect of welding wire compositions on welding process stability and droplet transfer behavior of high nitrogen stainless steel GMAW[J]. Transactions of the China Welding Institution, 2018, 39(7): 24 − 28.
[66] 张旭昀, 郑冰洁, 郭斌, 等. 高氮奥氏体不锈钢中N与Cr、Mn、Mo键合性质研究[J]. 材料导报, 2017, 31(18): 146 − 149. Zhang Xuyun, Zheng Bingjie, Guo Bin, et al. Theoretical study on bonding characteristics of Cr, Mn, Mo and N in high nitrogen austenitic stainless steel[J]. Materials Review, 2017, 31(18): 146 − 149.
[67] Liu Z, Fan C, Chen C, et al. Optimization of the microstructure and mechanical properties of the high nitrogen stainless steel weld by adding nitrides to the molten pool[J]. Journal of Manufacturing Processes, 2020, 49: 355 − 364. doi: 10.1016/j.jmapro.2019.12.017
[68] Vashishtha H, Taiwade R V, Sharma S, et al. Effect of welding processes on microstructural and mechanical properties of dissimilar weldments between conventional austenitic and high nitrogen austenitic stainless steels[J]. Journal of Manufacturing Processes, 2017, 25: 49 − 59. doi: 10.1016/j.jmapro.2016.10.008
[69] Moon J, Lee T H, Park S J, et al. Tensile deformation behavior and phase transformation in the weld coarse-grained heat-affected zone of metastable high-nitrogen Fe-18Cr-10Mn-N stainless steel[J]. Metallurgical and Materials Transactions A, 2013, 44(7): 3069 − 3076. doi: 10.1007/s11661-013-1682-2
[70] Li J, Li H, Liang Y, et al. Effects of heat input and cooling rate during welding on intergranular corrosion behavior of high nitrogen austenitic stainless steel welded joints[J]. Corrosion Science, 2020, 166: 108445. doi: 10.1016/j.corsci.2020.108445
[71] 明珠, 王克鸿, 王伟, 等. 冷却速率对高氮钢焊缝组织和性能的影响[J]. 焊接学报, 2019, 40(10): 31 − 35. Ming Zhu, Wang Kehong, Wang Wei, et al. Effect of cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metal[J]. Transactions of the China Welding Institution, 2019, 40(10): 31 − 35.
[72] 徐娟娟, 王克鸿, 彭勇, 等. 热输入对高氮钢光纤激光焊接接头气孔及组织性能的影响[J]. 造船技术, 2016(1): 55 − 59,79. doi: 10.3969/j.issn.1000-3878.2016.01.013 Xu Juanjuan, Wang Kehong, Peng Yong, et al. Effect of heat input on stomatal resistance and mechanical properties of high nitrogen steel plate laser welding joint[J]. Marine Technology, 2016(1): 55 − 59,79. doi: 10.3969/j.issn.1000-3878.2016.01.013
[73] Liu F D, Li X R, Li Y Z, et al. Study of the microstructure and impact properties of the heat-affected zone of high nitrogen steel for laser-arc hybrid welding[J]. Materials Research Express, 2019, 6(7): 076505. doi: 10.1088/2053-1591/ab11f7
[74] 王力锋, 刘凤德, 刘薇娜, 等. 高氮钢激光-电弧复合焊接接头组织与力学性能研究[C]// 甘肃: 第二十次全国焊接学术会议论文集, 甘肃, 2015: 1-5. Wang Lifeng, Liu Fengde, Liu Weina, et al. Microstructure and mechanical properties of laser-arc hybrid welded joints of high nitrogen steel [C]. Proceedings of the 20th National Welding Academic Conference, Gansu, 2015: 1-5.
[75] Vashishtha H, Taiwade R V, Sharma S. Effect of electrodes and post weld solution annealing treatment on microstructures, mechanical properties and corrosion resistance of dissimilar high nitrogen austenitic and conventional austenitic stainless steel weldments[J]. Materials Transactions, 2017, 58(2): 182 − 185. doi: 10.2320/matertrans.M2016175
[76] Kumar N, Arora N, Goel S K. Study on metallurgical and mechanical aspects of GMA welded nitronic steel under the influence of weld quenching[J]. Journal of Manufacturing Processes, 2020, 56: 116 − 130. doi: 10.1016/j.jmapro.2020.04.050
[77] Fang N W, Huang R S, Wang X X, et al. Effect of shielding gas on the microstructure and properties of laser-MAG hybrid welded joint for nickel-saving stainless steel[J]. Advances in Materials Science and Engineering, 2022, 2022: 9330521.
[78] Kumar Rajak D, Pagar D D, Menezes P L, et al. Friction-based welding processes: friction welding and friction stir welding[J]. Journal of Adhesion Science and Technology, 2020, 34(24): 2613 − 2637. doi: 10.1080/01694243.2020.1780716
[79] Miyano Y, Fujii H, Sun Y, et al. Mechanical properties of friction stir butt welds of high nitrogen-containing austenitic stainless steel[J]. Materials Science and Engineering:A, 2011, 528(6): 2917 − 2921. doi: 10.1016/j.msea.2010.12.071
[80] Wang D, Ni D R, Xiao B L, et al. Microstructural evolution and mechanical properties of friction stir welded joint of Fe-Cr-Mn-Mo-N austenite stainless steel[J]. Materials & Design, 2014, 64: 355 − 359.
[81] Hajian M, Abdollah-Zadeh A, Rezaei-Nejad S, et al. Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel[J]. Materials & Design, 2015, 67: 82 − 94.
[82] 杜东旭. 高氮钢搅拌摩擦焊接接头组织与性能相关性研究[D]. 秦皇岛: 燕山大学, 2014. Du Dongxu. Investigation on correlation between microstructure and property of friction stir welding joint of high nitrogen steel[D]. Qinhuangdao: Yanshan University, 2014.
[83] 李艺君, 杜东旭, 付瑞东. 焊后热处理对高氮奥氏体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 机械工程学报, 2015, 51(22): 47 − 53. doi: 10.3901/JME.2015.22.047 Li Yijun, Du Dongxu, Fu Ruidong. Effect of post-welded heat treatment on the microstructures and mechanical properties of friction stir welded joint of high-nitrogen austenitic stainless steel[J]. Journal of Mechanical Engineering, 2015, 51(22): 47 − 53. doi: 10.3901/JME.2015.22.047
[84] Zhang H, Zhu W, Zhang T, et al. Effect of brazing temperature on microstructure and mechanical property of high nitrogen austenitic stainless steel joints brazed with Ni-Cr-P filler[J]. ISIJ International, 2019, 59(2): 300 − 304. doi: 10.2355/isijinternational.ISIJINT-2018-442
[85] 任伊宾, 王青川, 邵传伟, 等. 一种血管支架用高氮奥氏体不锈钢及其应用: 中国, 201310150983.2[P]. 2015-06-10. Ren Yibin, Wang Qingchuan, Shao Chuanwei, et al. A kind of high nitrogen austenitic stainless steel for vascular stent and its application: CN patent, 201310150983.2[P]. 2015-06-10.
[86] 李文, 白树功. 高安全性无镍金属药物洗脱血管支架及其制造方法: 中国, 202010364623.2[P]. 2020-10-30. Li Wen, Bai Shugong. High safety nickel free metal drug eluting vascular stent and its manufacturing method: CN patent, 202010364623.2[P]. 2020-10-30.
[87] 屈华鹏, 郎宇平, 陈海涛. 无磁钻铤用高氮不锈钢的研究和发展[J]. 热加工工艺, 2014, 43(24): 14 − 18. Qu Huapeng, Lang Yuping, Chen Haitao. Research and development on high nitrogen stainless steels used for non-magnetic drilling collar[J]. Hot Working Technology, 2014, 43(24): 14 − 18.
[88] 屈华鹏, 郎宇平, 陈海涛. 一种无磁钻铤用高氮奥氏体不锈钢及其制造方法: 中国, 201711244575.8[P]. 2018-04-13. Qu Huapeng, Lang Yuping, Chen Haitao. A king of high nitrogen austenitic stainless steel for non-magnetic drill collars and the manufacturing method of it: CN patent, 201711244575.8[P]. 2018-04-13.
[89] 秦国梁, 杨帆, 李长安. 高氮奥氏体不锈钢和无磁钻铤的轴向摩擦焊接工艺方法: 中国, 201810746344.5[P]. 2018-11-30. Qin Guoliang, Yang Fan, Li Changan. Axial friction welding process of high nitrogen austenitic stainless steel and non-magnetic drill collar: CN patent, 201810746344.5[P]. 2018-11-30.
[90] 王宇, 彭翔飞, 李俊, 等. 高氮奥氏体不锈钢强韧化及抗弹性能研究进展[J]. 钢铁, 2022, 57(1): 28 − 38. doi: 10.13228/j.boyuan.issn0449-749x.20210373 Wang Yu, Peng Xiangfei, Li Jun, et al. Research progress on strengthening mechanism and ballistic performance of high nitrogen austenitic stainless steels[J]. Iron Steel, 2022, 57(1): 28 − 38. doi: 10.13228/j.boyuan.issn0449-749x.20210373
[91] 王红鸿, 孟庆润. 一种适用于高氮装甲钢焊接的高氮金属粉芯药芯焊丝: 中国, 201910521297.9[P]. 2019-08-30. Wang Honghong, Meng Qingrun. A high nitrogen metal powder cored flux cored wire for welding high nitrogen armor steel: CN patent, 201910521297.9[P]. 2019-08-30.
-
期刊类型引用(15)
1. 李沫琦,陈书锦,孟令斐,高源,张帅,刘建华,贺鹏. 基于激光视觉的搅拌摩擦焊缝表面缺陷检测与控制. 应用激光. 2025(02): 157-167 . 百度学术
2. 谢宁,陈梁,裴自卿,何智成,陈涛. 基于改进U-Net的白车身焊点定位研究. 测试技术学报. 2024(01): 12-18 . 百度学术
3. 徐远钊,罗玖田,方乃文,冯志强,武鹏博,黎泉. 基于MS-FCM算法的船体板熔池图像处理技术. 焊接学报. 2024(03): 82-90+133-134 . 本站查看
4. 王树强,王旭,高元德,贺久洲. 基于视觉传感器的钢管塔焊缝特征提取方法. 机械工程师. 2024(07): 30-33 . 百度学术
5. 李冰,白云山,赵宽,胡瑞雪,赵占良,宋立军,董玉召. 基于视觉传感的薄板对接焊缝检测方法研究. 热加工工艺. 2024(17): 13-19 . 百度学术
6. 段岳飞,马嵩华,胡天亮. 基于全卷积神经网络的焊缝识别方法. 制造技术与机床. 2023(04): 44-49 . 百度学术
7. 柴绪彬,陈欢群,刘蔓,张开放. 基于激光视觉传感器的厚钢板焊缝检测. 自动化应用. 2023(09): 160-163 . 百度学术
8. 陆娇娇,肖衡. 基于深度学习的近红外光谱图像处理的农作物虫害检测研究. 激光杂志. 2023(08): 221-225 . 百度学术
9. 李聚才,刘雪峰,李瑞光,吴志生,李岩. 基于图像处理的焊缝待焊点像素位置自动提取. 山西冶金. 2023(08): 105-108 . 百度学术
10. 王文楷,石玗,张刚,李春凯,朱明,徐睦忠,代锋先,许有伟. 基于激光视觉检测的焊缝轨迹离线规划. 电焊机. 2023(09): 55-60 . 百度学术
11. 程进,徐乃涛,郁伟俊. 面向焊接机器人的视觉传感技术. 电焊机. 2023(09): 61-69+123 . 百度学术
12. 谢昊,郭天太,王浩. 基于分段拟合算法的V型焊缝识别. 现代电子技术. 2023(20): 153-158 . 百度学术
13. 张旭强,万渤麟,于志浩. 焊点压痕图像采集实验系统设计及图像预处理分析. 实验技术与管理. 2023(09): 35-40 . 百度学术
14. 王树强,王旭,高元德,贺久洲. 基于改进核相关算法的钢管塔焊缝特征跟踪研究. 管道技术与设备. 2023(06): 11-15+44 . 百度学术
15. 李金洋,沙杰,胡森龙,鲁庆洋,周高伟,刘梦园. Y型管接头组对焊接间隙视觉检测方法研究. 电子测量技术. 2022(24): 161-165 . 百度学术
其他类型引用(12)