高级检索

高氮钢连接技术研究进展

王星星, 田家豪, 李帅, 方乃文, 何鹏, 倪增磊, 温国栋

王星星, 田家豪, 李帅, 方乃文, 何鹏, 倪增磊, 温国栋. 高氮钢连接技术研究进展[J]. 焊接学报, 2023, 44(9): 118-128. DOI: 10.12073/j.hjxb.20221025001
引用本文: 王星星, 田家豪, 李帅, 方乃文, 何鹏, 倪增磊, 温国栋. 高氮钢连接技术研究进展[J]. 焊接学报, 2023, 44(9): 118-128. DOI: 10.12073/j.hjxb.20221025001
WANG Xingxing, TIAN Jiahao, LI Shuai, FANG Naiwen, HE Peng, NI Zenglei, WEN Guodong. Research progress on advanced joining technology of high-nitrogen steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 118-128. DOI: 10.12073/j.hjxb.20221025001
Citation: WANG Xingxing, TIAN Jiahao, LI Shuai, FANG Naiwen, HE Peng, NI Zenglei, WEN Guodong. Research progress on advanced joining technology of high-nitrogen steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 118-128. DOI: 10.12073/j.hjxb.20221025001

高氮钢连接技术研究进展

基金项目: 国家自然科学基金资助项目(52071165、51705151);河南省高层次人才特殊支持“中原英才计划-中原青年拔尖人才”项目;河南省优秀青年科学基金项目(202300410268);河南省高校科技创新人才计划(22HASTIT026);江苏省科技副总项目(FZ20220793).
详细信息
    作者简介:

    王星星,博士,副教授,博士研究生导师;主要从事先进连接与智能制造、关键金属材料与再制造方面的研究工作;Email: paperwxx@126.com

  • 中图分类号: TG 44; TG 47

Research progress on advanced joining technology of high-nitrogen steel

  • 摘要: 高氮钢具有高强度、高韧性、耐磨损和耐腐蚀等独特优势,相关连接件已广泛用于医疗仪器和采矿器械等领域. 主要对近年来国内外有关高氮钢钨极气体保护焊、熔化极气体保护焊、激光焊与激光复合焊、搅拌摩擦焊和钎焊技术研究报道进行详细综述. 根据熔焊、固焊、钎焊3大分类,从保护气体、热输入、工艺参数等方面系统评述现有各类高氮钢焊接方法与工艺调控,并介绍了医疗器械、石油钻铤、装甲防护领域国内高氮钢材料的应用现状,最后指出现有高氮钢连接体系研究中存在的不足及展望,期望对高氮钢焊接、高强材料功能性连接等相关领域研究和应用提供参考信息和理论依据.
    Abstract: High nitrogen steel offers unique benefits including high strength, toughness, abrasion resistance, and corrosion resistance. The connectors have been widespread application in military equipment, medical instruments, and mining devices. The major domestic and foreign research reports in recent years on gas tungsten arc welding, gas metal arc welding, laser welding and laser-arc hybrid welding, friction stir welding and brazing of high nitrogen steel are summarized in detail.According to the three main classifications of fusion welding, solid-state welding and brazing, the paper systematically reviews the existing various types of high-nitrogen steel welding methods and process control from the aspects of shielding gas, heat input,process parameters and others, introducing the current status of the application of high-nitrogen steel materials in the field of medical devices, oil drilling collars, and armor protection. Finally, the review points out the shortcomings and aspects of the existing research on high nitrogen steel joining systems, expecting to provide information and theoretical basis for the research and application in the fields of high nitrogen steel welding, functional joining of high-strength materials and other related fields.
  • 图  1   N2作用机理

    Figure  1.   Schematic of the action mechanism of N2

    图  2   焊缝的SEM图像

    Figure  2.   SEM images of the weld. (a) 0.15 N; (b) 0.6 N; (c) 0.9 N; (d) nitrogen content in the weld and the ratio of actual content to theoretical content

    图  3   不同温度高氧钢钎焊接头的显微组织

    Figure  3.   Microstructure of high-nitrogen steel joints at different brazing temperatures. (a) 1020 ℃; (b) partial enlargement of area bin Fig. 3a; (c) 1050 ℃; (d) 1100 ℃

    图  4   银铜镍钎料钎焊高氮钢接头界面元素扫描图

    Figure  4.   Surface scanning of the main elements on the brazed joint interface with AgCuNi filler. (a) Ag; (b) Cu; (c) Ni; (d) Fe; (e) Cr; (f) Mn

  • [1] 安瑞金, 赵琳, 田志凌, 等. 医疗器械用高氮不锈钢薄板激光焊接接头的组织与性能[J]. 应用激光, 2007, 27(6): 41 − 44.

    An Ruijin, Zhao Lin, Tian Zhiling, et al. Microstructure and mechanical properties of welded joint of high nitrogen austenite stainless steel thin plates for medical devices[J]. Applied Laser, 2007, 27(6): 41 − 44.

    [2]

    Svyazhin A, Kaputkina L, Smarygina I, et al. Nitrogen steels and high-nitrogen steels: industrial technologies and properties[J]. Steel Research International, 2022, 93(9): 2200160.

    [3]

    Radice S, Impergre A, Fischer A, et al. Corrosion resistance of the nickel‐free high‐nitrogen steel FeCrMnMoN0.9 under simulated inflammatory conditions[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2021, 109(6): 902 − 910. doi: 10.1002/jbm.b.34754

    [4]

    Li S, Zhang C S, Lu J P, et al. A review of progress on high nitrogen austenitic stainless-steel research[J]. Materials Express, 2021, 11(12): 1901 − 1925. doi: 10.1166/mex.2021.2109

    [5]

    Li M, Wu H, Wang Y, et al. Immobilization of heparin/poly-L-lysine microspheres on medical grade high nitrogen nickel-free austenitic stainless steel surface to improve the biocompatibility and suppress thrombosis[J]. Materials Science and Engineering:C, 2017, 73: 198 − 205. doi: 10.1016/j.msec.2016.12.070

    [6]

    Lang Y P, Qu H P, Chen H T, et al. Research progress and development tendency of nitrogen-alloyed austenitic stainless steels[J]. Journal of Iron and Steel Research International, 2015, 22(2): 91 − 98. doi: 10.1016/S1006-706X(15)60015-2

    [7]

    Li J, Li H, Peng W, et al. Effect of simulated welding thermal cycles on microstructure and mechanical properties of coarse-grain heat-affected zone of high nitrogen austenitic stainless steel[J]. Materials Characterization, 2019, 149: 206 − 217. doi: 10.1016/j.matchar.2019.01.030

    [8]

    Qin Y, Li J, Herbig M. Microstructural origin of the outstanding durability of the high nitrogen bearing steel X30CrMoN15-1[J]. Materials Characterization, 2020, 159: 110049. doi: 10.1016/j.matchar.2019.110049

    [9]

    Zhao Y, Sun Y, Li X, et al. In-situ observation of δ ↔ γ phase transformations in duplex stainless steel containing different nitrogen contents[J]. ISIJ International, 2017, 57(9): 1637 − 1644. doi: 10.2355/isijinternational.ISIJINT-2017-125

    [10] 汤旭炜. Mn18Cr18N护环钢工艺的基础研究[D]. 北京: 北京科技大学, 2017.

    Tang Xuwei. Fundamental study on process of Mn18Cr18N retaining ring steel[D]. Beijing: University of Science and Technology Beijing, 2017.

    [11] 孙世成. 高氮无镍奥氏体不锈钢的微观结构和力学性能研究[D]. 吉林: 吉林大学, 2014.

    Sun Shicheng. Microstructure and mechanical properties of high nitrogen nickel-free austenitic stainless steel[D]. Jilin: Jilin University, 2014.

    [12]

    Tan H, Jiang Y, Deng B, et al. Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750[J]. Materials Characterization, 2009, 60(9): 1049 − 1054. doi: 10.1016/j.matchar.2009.04.009

    [13]

    Ma Z H, Chen D G, Liu H W, et al. Microstructure and mechanical properties of welding joints of high nitrogen steel by hybrid laser-arc welding[J]. Applied Mechanics and Materials, 2014, 496: 444 − 447.

    [14]

    Wang L, Li Y, Ding J, et al. Problems in welding of high nitrogen steel: A Review[J]. Metals, 2022, 12(8): 1273.

    [15] 张志强, 荆洪阳, 徐连勇, 等. 铁素体/奥氏体双相不锈钢焊接接头组织和性能的研究进展[J]. 材料热处理学报, 2020, 41(5): 13 − 27.

    Zhang Zhiqiang, Jing Hongyang, Xu Lianyong, et al. Research progress on microstructure and properties of welded joint of ferrite/austenite duplex stainless steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(5): 13 − 27.

    [16]

    Zhao L, Tian Z L, Peng Y, et al. Control of nitrogen content and porosity in gas tungsten arc welding of high nitrogen steel[J]. Science and Technology of Welding and Joining, 2009, 14(1): 87 − 92. doi: 10.1179/136217108X343939

    [17]

    Lu S, Dong W, Li D, et al. Numerical study and comparisons of gas tungsten arc properties between argon and nitrogen[J]. Computational Materials Science, 2009, 45(2): 327 − 335. doi: 10.1016/j.commatsci.2008.10.010

    [18]

    Hosseini V A, Wessman S, Hurtig K, et al. Nitrogen loss and effects on microstructure in multipass TIG welding of a super duplex stainless steel[J]. Materials & Design, 2016, 98: 88 − 97.

    [19] 周杰, 张明渝, 李志洋, 等. 高氮不锈钢与675高强钢焊接接头微观组织与力学性能[J]. 焊接, 2022(2): 6 − 10.

    Zhou Jie, Zhang Mingyu, Li Zhiyang, et al. Microstructure and mechanical properties of welded joint between high nitrogen stainless steel and 675 high strength steel[J]. Welding & Joining, 2022(2): 6 − 10.

    [20] 杨武林, 陈东高, 王有祁, 等. 中厚度高氮钢双丝MIG焊接头组织和性能研究[J]. 兵器材料科学与工程, 2013, 36(5): 100 − 102.

    Yang Wulin, Chen Donggao, Wang Youqi, et al. Microstructure and mechanical properties of MIG welded joint of mid-thickness high nitrogen steel[J]. Ordnance Material Science and Engineering, 2013, 36(5): 100 − 102.

    [21]

    Li J G, Li H, Liang Y, et al. The microstructure and mechanical properties of multi-strand, composite welding-wire welded joints of high nitrogen austenitic stainless steel[J]. Materials, 2019, 12(18): 2944. doi: 10.3390/ma12182944

    [22] 杜挽生, 彭云, 赵琳, 等. 高氮奥氏体不锈钢MIG焊接头的组织和性能[J]. 焊接, 2008(10): 25 − 29.

    Du Wansheng, Peng Yun, Zhao Lin, et al. Microstructure and mechanical properties of MIG welded joint of high nitrogen austenite stainless steel[J]. Welding & Joining, 2008(10): 25 − 29.

    [23] 明珠, 王克鸿, 张迎迎, 等. 高氮奥氏体钢与603钢焊接结构疲劳性能的对比研究[J]. 焊接技术, 2016, 45(11): 28 − 30.

    Ming Zhu, Wang Kehong, Zhang Yingying, et al. Comparative study on fatigue properties of welded structures of high nitrogen austenitic steel and 603 steel[J]. Welding Technology, 2016, 45(11): 28 − 30.

    [24] 冯兆龙. 高氮奥氏体不锈钢仰焊焊接接头组织与性能研究[J]. 焊接, 2010(12): 43 − 45.

    Feng Zhaolong. Microstructure and properties of high nitrogen stainless steel welded joint by upward welding[J]. Welding & Joining, 2010(12): 43 − 45.

    [25]

    Zhao L, Tian Z L, Peng Y, et al. Porosity and nitrogen content of weld metal in laser welding of high nitrogen austenitic stainless steel[J]. ISIJ international, 2007, 47(12): 1772 − 1775. doi: 10.2355/isijinternational.47.1772

    [26] 李永杰. 气孔和裂纹对高氮钢光纤激光焊接接头力学性能的影响[J]. 应用激光, 2017, 37(5): 681 − 686.

    Li Yongjie. Effects of air holes and cracks on the mechanical properties of high nitrogen steel fiber laser welded joints[J]. Applied Laser, 2017, 37(5): 681 − 686.

    [27]

    Bai D, Liu F, Zhang H, et al. Corrosion behavior and passivation protection mechanism on different zone of high-nitrogen steel weld[J]. Materials Letters, 2021, 10(1): 300.

    [28]

    Ning J, Na S J, Wang C H, et al. A comparison of laser-metal inert gas hybrid welding and metal inert gas welding of high-nitrogen austenitic stainless steel[J]. Journal of Materials Research and Technology, 2021, 13: 1841 − 1854. doi: 10.1016/j.jmrt.2021.05.113

    [29] 方乃文, 黄瑞生, 闫德俊, 等. 低镍含氮奥氏体不锈钢激光-电弧焊电弧特性及组织性能[J]. 焊接学报, 2021, 42(1): 70 − 75.

    Fang Naiwen, Huang Ruisheng, Yan Dejun, et al. Effect of welding heatinput on microstructure and properties of MAG welded joint for low nickel high nitrogen austenitic stainless steel[J]. Transactions of the China Welding Institution, 2021, 42(1): 70 − 75.

    [30] 王健, 刘天生. 高氮钢与铝板的爆炸焊接可行性探究[J]. 兵器材料科学与工程, 2016, 39(2): 98 − 102.

    Wang Jian, Liu Tiansheng. Explosion welding feasibility of high nitrogen steel and aluminum plate[J]. Ordnance Material Science and Engineering, 2016, 39(2): 98 − 102.

    [31]

    Liu Y, Li C, Hu X, et al. Explosive welding of copper to high nitrogen austenitic stainless steel[J]. Metals, 2019, 9(3): 339. doi: 10.3390/met9030339

    [32]

    Li H B, Jiang Z H, Feng H, et al. Microstructure, mechanical and corrosion properties of friction stir welded high nitrogen nickel-free austenitic stainless steel[J]. Materials & Design, 2015, 84: 291 − 299.

    [33]

    Zhang H, Wang D, Xue P, et al. Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel[J]. Materials & Design, 2016, 110: 802 − 810.

    [34]

    Zhang H, Wang D, Xue P, et al. Achieving ultra-high strength friction stir welded joints of high nitrogen stainless steel by forced water cooling[J]. Journal of Materials Science & Technology, 2018, 34(11): 2183 − 2188.

    [35]

    Yuan X J, Kang C Y, Kim M B. Microstructure and XRD analysis of brazing joint for duplex stainless steel using a Ni-Si-B filler metal[J]. Materials Characterization, 2009, 60(9): 923 − 931. doi: 10.1016/j.matchar.2009.03.004

    [36]

    Zhu W W, Zhang H, Guo C H, et al. Wetting and brazing characteristic of high nitrogen austenitic stainless steel and 316L austenitic stainless steel by Ag-Cu filler[J]. Vacuum, 2019, 166: 97 − 106. doi: 10.1016/j.vacuum.2019.04.064

    [37]

    Qiang W, Wang K H. Shielding gas effects on double-sided synchronous autogenous GTA weldability of high nitrogen austenitic stainless steel[J]. Journal of Materials Processing Technology, 2017, 250: 169 − 181. doi: 10.1016/j.jmatprotec.2017.07.021

    [38]

    Mohammed R, Reddy G M, Rao K S. Effect of filler wire composition on microstructure and pitting corrosion of nickel free high nitrogen stainless steel GTA Welds[J]. Transactions of the Indian Institute of Metals, 2016, 69(10): 1919 − 1927. doi: 10.1007/s12666-016-0851-6

    [39]

    Liu Z, Fan C, Ming Z, et al. Optimization of shielding gas composition in high nitrogen stainless steel gas metal arc welding[J]. Journal of Manufacturing Processes, 2020, 58: 19 − 29. doi: 10.1016/j.jmapro.2020.08.001

    [40] 方乃文, 黄瑞生, 杨义成, 等. 填充金属对08Cr19MnNi3Cu2N低镍含氮奥氏体不锈钢MAG焊接头组织性能的影响[J]. 机械制造文摘(焊接分册), 2019, 6: 20 − 25.

    Fang Naiwen, Huang Ruisheng, Yang Yicheng, et al. Effect of filler metal on microstructure and properties of welded joint for 08Cr19MnNi3Cu2N austenitic stainless steel with low nickel and nitrogen[J]. Welding Digest of Machinery Manufacturing, 2019, 6: 20 − 25.

    [41] 明珠, 王克鸿, 王伟, 等. 焊丝含氮量及焊接电流对高氮钢焊缝组织和性能影响[J]. 焊接学报, 2019, 40(1): 104 − 108.

    Ming Zhu, Wang Kehong, Wang Wei, et al. Effects of nitrogen content and welding current on microstructure and properties of the weld of high nitrogen austenite steel[J]. Transactions of the China Welding Institution, 2019, 40(1): 104 − 108.

    [42]

    Keskitalo M, Mäntyjärvi K, Sundqvist J, et al. Laser welding of duplex stainless steel with nitrogen as shielding gas[J]. Journal of Materials Processing Technology, 2015, 216: 381 − 384. doi: 10.1016/j.jmatprotec.2014.10.004

    [43]

    Lai R, Cai Y, Wu Y, et al. Influence of absorbed nitrogen on microstructure and corrosion resistance of 2205 duplex stainless steel joint processed by fiber laser welding[J]. Journal of Materials Processing Technology, 2016, 231: 397 − 405. doi: 10.1016/j.jmatprotec.2016.01.016

    [44] 冯志鹏, 刘凤德, 刘双宇, 等. 激光功率对高氮钢激光焊接焊缝组织和性能的影响[J]. 应用激光, 2015, 35(5): 564 − 568.

    Feng Zhipeng, Liu Fengde, Liu Shuangyu, et al. Influence of laser power on microstructure and properties of high nitrogen stainless steel with laser welding[J]. Applied Laser, 2015, 35(5): 564 − 568.

    [45]

    Berezovskaya V V, Berezovskiy A V, Hilfi D H. Laser welded joints of high-nitrogen austenitic steels: Microstructure and Properties[J]. Solid State Phenomena, 2018, 284: 344 − 350. doi: 10.4028/www.scientific.net/SSP.284.344

    [46]

    Cui B, Luo T, Feng M. Effect of nitrogen content on the microstructure and properties of the laser-arc hybrid welding joint of high nitrogen steel[J]. Optik, 2021, 243: 167478. doi: 10.1016/j.ijleo.2021.167478

    [47]

    Li X, Bai D, Wang Y, et al. High-nitrogen steel laser-arc hybrid welding in vibration condition[J]. Materials Science and Technology, 2019, 36(4): 434 − 442.

    [48]

    Bai D, Yang Z, Chen M, et al. Study on corrosion mechanism of high-nitrogen steel laser-arc hybrid welded joints[J]. Materials Research Express, 2020, 7(10): 106531. doi: 10.1088/2053-1591/abc372

    [49]

    Li H, Yang S, Zhang S, et al. Microstructure evolution and mechanical properties of friction stir welding super-austenitic stainless steel S32654[J]. Materials & Design, 2017, 118: 207 − 217.

    [50]

    Zhang H, Xue P, Wang D, et al. Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel[J]. Journal of Materials Science & Technology, 2019, 35(7): 1278 − 1283.

    [51]

    Du D, Fu R, Li Y, et al. Gradient characteristics and strength matching in friction stir welded joints of Fe-18Cr-16Mn-2Mo-0.85N austenitic stainless steel[J]. Materials Science and Engineering:A, 2014, 616: 246 − 251. doi: 10.1016/j.msea.2014.08.012

    [52]

    Zhu W, Jiang H, Zhang H, et al. Microstructure and strength of high nitrogen steel joints brazed with Ni-Cr-B-Si filler[J]. Materials Science and Technology, 2017, 34(8): 926 − 833.

    [53]

    Wang X X, Li Z F, Gao D, et al. Microstructure and joint properties of high-nitrogen steel brazed by AgCuNi filler metal[J]. International Journal of Modern Physics B, 2022, 36(5): 2250045. doi: 10.1142/S021797922250045X

    [54]

    Dong F Y, Zhang P, Pang J C, et al. Microstructure and mechanical properties of high-nitrogen austenitic stainless steels subjected to Equal-Channel angular pressing[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(2): 140 − 149. doi: 10.1007/s40195-016-0370-9

    [55]

    Li J Y, Liu H N, Huang P W. Effects of pre-precipitation of Cr2N on microstructures and properties of high nitrogen stainless steel[J]. Journal of Central South University, 2012, 19(5): 1189 − 1195. doi: 10.1007/s11771-012-1127-x

    [56] 马良超, 马冰, 王大锋, 等. 保护气配比对高氮钢焊丝接头组织性能的影响[J]. 兵器材料科学与工程, 2021, 44(1): 59 − 62.

    Ma Liangchao, Ma Bing, Wang Dafeng, et al. Effects of shielding gas ratio on microstructure and properties of high nitrogen steel welded joint[J]. Ordnance Material Science and Engineering, 2021, 44(1): 59 − 62.

    [57]

    Liu Z, Fan C L, Ming Z, et al. Gas metal arc welding of high nitrogen stainless steel with Ar-N2-O2 ternary shielding gas[J]. Defence Technology, 2021, 17(3): 923 − 931. doi: 10.1016/j.dt.2020.05.021

    [58]

    Ma Y, Lü X, Fang N, et al. Research on microstructure evolution of deposited metal of low nickel high nitrogen austenitic stainless steel[J]. Advances in Materials Science and Engineering, 2021, 2021: 7655423.

    [59]

    Woo I, Kikuchi Y. Weldability of high nitrogen stainless steel[J]. ISIJ International, 2002, 42(12): 1334 − 1343. doi: 10.2355/isijinternational.42.1334

    [60]

    Bo C, Hong Z, Fengde L. Effects of shielding gas composition on the welding stability, microstructure and mechanical properties in laser-arc hybrid welding of high nitrogen steel[J]. Materials Research Express, 2018, 5(9): 096513. doi: 10.1088/2053-1591/aad6c5

    [61]

    Kumar N, Arora N, Goel S K, et al. A comparative study of microstructure and mechanical properties of 21-4-N steel weld joints using different filler materials[J]. Materials Today:Proceedings, 2018, 5(9): 17089 − 17096. doi: 10.1016/j.matpr.2018.04.116

    [62]

    Wang J Y, Qi T, Zhong C L, et al. Study on seam nitrogen behavior of high nitrogen steel hybrid welding[J]. Optik, 2021, 242: 167026. doi: 10.1016/j.ijleo.2021.167026

    [63]

    Liu Z, Fan C, Chen C, et al. Design and evaluation of nitrogen-rich welding wires for high nitrogen stainless steel[J]. Journal of Materials Processing Technology, 2021, 288: 116885. doi: 10.1016/j.jmatprotec.2020.116885

    [64] 荆皓, 王克鸿, 强伟, 等. 氮含量对高氮钢PMIG焊接头组织和性能的影响[J]. 焊接学报, 2017, 38(4): 95 − 98.

    Jing Hao, Wang Kehong, Qiang Wei, et al. Influence of N-content on microstructure and mechanical properties of PMIG welding joints of high nitrogen steel[J]. Transactions of the China Welding Institution, 2017, 38(4): 95 − 98.

    [65] 明珠, 王克鸿, 王伟, 等. 焊丝成分对高氮不锈钢GMAW稳定性及熔滴过渡行为的影响[J]. 焊接学报, 2018, 39(7): 24 − 28.

    Ming Zhu, Wang Kehong, Wang Wei, et al. Effect of welding wire compositions on welding process stability and droplet transfer behavior of high nitrogen stainless steel GMAW[J]. Transactions of the China Welding Institution, 2018, 39(7): 24 − 28.

    [66] 张旭昀, 郑冰洁, 郭斌, 等. 高氮奥氏体不锈钢中N与Cr、Mn、Mo键合性质研究[J]. 材料导报, 2017, 31(18): 146 − 149.

    Zhang Xuyun, Zheng Bingjie, Guo Bin, et al. Theoretical study on bonding characteristics of Cr, Mn, Mo and N in high nitrogen austenitic stainless steel[J]. Materials Review, 2017, 31(18): 146 − 149.

    [67]

    Liu Z, Fan C, Chen C, et al. Optimization of the microstructure and mechanical properties of the high nitrogen stainless steel weld by adding nitrides to the molten pool[J]. Journal of Manufacturing Processes, 2020, 49: 355 − 364. doi: 10.1016/j.jmapro.2019.12.017

    [68]

    Vashishtha H, Taiwade R V, Sharma S, et al. Effect of welding processes on microstructural and mechanical properties of dissimilar weldments between conventional austenitic and high nitrogen austenitic stainless steels[J]. Journal of Manufacturing Processes, 2017, 25: 49 − 59. doi: 10.1016/j.jmapro.2016.10.008

    [69]

    Moon J, Lee T H, Park S J, et al. Tensile deformation behavior and phase transformation in the weld coarse-grained heat-affected zone of metastable high-nitrogen Fe-18Cr-10Mn-N stainless steel[J]. Metallurgical and Materials Transactions A, 2013, 44(7): 3069 − 3076. doi: 10.1007/s11661-013-1682-2

    [70]

    Li J, Li H, Liang Y, et al. Effects of heat input and cooling rate during welding on intergranular corrosion behavior of high nitrogen austenitic stainless steel welded joints[J]. Corrosion Science, 2020, 166: 108445. doi: 10.1016/j.corsci.2020.108445

    [71] 明珠, 王克鸿, 王伟, 等. 冷却速率对高氮钢焊缝组织和性能的影响[J]. 焊接学报, 2019, 40(10): 31 − 35.

    Ming Zhu, Wang Kehong, Wang Wei, et al. Effect of cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metal[J]. Transactions of the China Welding Institution, 2019, 40(10): 31 − 35.

    [72] 徐娟娟, 王克鸿, 彭勇, 等. 热输入对高氮钢光纤激光焊接接头气孔及组织性能的影响[J]. 造船技术, 2016(1): 55 − 59,79. doi: 10.3969/j.issn.1000-3878.2016.01.013

    Xu Juanjuan, Wang Kehong, Peng Yong, et al. Effect of heat input on stomatal resistance and mechanical properties of high nitrogen steel plate laser welding joint[J]. Marine Technology, 2016(1): 55 − 59,79. doi: 10.3969/j.issn.1000-3878.2016.01.013

    [73]

    Liu F D, Li X R, Li Y Z, et al. Study of the microstructure and impact properties of the heat-affected zone of high nitrogen steel for laser-arc hybrid welding[J]. Materials Research Express, 2019, 6(7): 076505. doi: 10.1088/2053-1591/ab11f7

    [74] 王力锋, 刘凤德, 刘薇娜, 等. 高氮钢激光-电弧复合焊接接头组织与力学性能研究[C]// 甘肃: 第二十次全国焊接学术会议论文集, 甘肃, 2015: 1-5.

    Wang Lifeng, Liu Fengde, Liu Weina, et al. Microstructure and mechanical properties of laser-arc hybrid welded joints of high nitrogen steel [C]. Proceedings of the 20th National Welding Academic Conference, Gansu, 2015: 1-5.

    [75]

    Vashishtha H, Taiwade R V, Sharma S. Effect of electrodes and post weld solution annealing treatment on microstructures, mechanical properties and corrosion resistance of dissimilar high nitrogen austenitic and conventional austenitic stainless steel weldments[J]. Materials Transactions, 2017, 58(2): 182 − 185. doi: 10.2320/matertrans.M2016175

    [76]

    Kumar N, Arora N, Goel S K. Study on metallurgical and mechanical aspects of GMA welded nitronic steel under the influence of weld quenching[J]. Journal of Manufacturing Processes, 2020, 56: 116 − 130. doi: 10.1016/j.jmapro.2020.04.050

    [77]

    Fang N W, Huang R S, Wang X X, et al. Effect of shielding gas on the microstructure and properties of laser-MAG hybrid welded joint for nickel-saving stainless steel[J]. Advances in Materials Science and Engineering, 2022, 2022: 9330521.

    [78]

    Kumar Rajak D, Pagar D D, Menezes P L, et al. Friction-based welding processes: friction welding and friction stir welding[J]. Journal of Adhesion Science and Technology, 2020, 34(24): 2613 − 2637. doi: 10.1080/01694243.2020.1780716

    [79]

    Miyano Y, Fujii H, Sun Y, et al. Mechanical properties of friction stir butt welds of high nitrogen-containing austenitic stainless steel[J]. Materials Science and Engineering:A, 2011, 528(6): 2917 − 2921. doi: 10.1016/j.msea.2010.12.071

    [80]

    Wang D, Ni D R, Xiao B L, et al. Microstructural evolution and mechanical properties of friction stir welded joint of Fe-Cr-Mn-Mo-N austenite stainless steel[J]. Materials & Design, 2014, 64: 355 − 359.

    [81]

    Hajian M, Abdollah-Zadeh A, Rezaei-Nejad S, et al. Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel[J]. Materials & Design, 2015, 67: 82 − 94.

    [82] 杜东旭. 高氮钢搅拌摩擦焊接接头组织与性能相关性研究[D]. 秦皇岛: 燕山大学, 2014.

    Du Dongxu. Investigation on correlation between microstructure and property of friction stir welding joint of high nitrogen steel[D]. Qinhuangdao: Yanshan University, 2014.

    [83] 李艺君, 杜东旭, 付瑞东. 焊后热处理对高氮奥氏体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 机械工程学报, 2015, 51(22): 47 − 53. doi: 10.3901/JME.2015.22.047

    Li Yijun, Du Dongxu, Fu Ruidong. Effect of post-welded heat treatment on the microstructures and mechanical properties of friction stir welded joint of high-nitrogen austenitic stainless steel[J]. Journal of Mechanical Engineering, 2015, 51(22): 47 − 53. doi: 10.3901/JME.2015.22.047

    [84]

    Zhang H, Zhu W, Zhang T, et al. Effect of brazing temperature on microstructure and mechanical property of high nitrogen austenitic stainless steel joints brazed with Ni-Cr-P filler[J]. ISIJ International, 2019, 59(2): 300 − 304. doi: 10.2355/isijinternational.ISIJINT-2018-442

    [85] 任伊宾, 王青川, 邵传伟, 等. 一种血管支架用高氮奥氏体不锈钢及其应用: 中国, 201310150983.2[P]. 2015-06-10.

    Ren Yibin, Wang Qingchuan, Shao Chuanwei, et al. A kind of high nitrogen austenitic stainless steel for vascular stent and its application: CN patent, 201310150983.2[P]. 2015-06-10.

    [86] 李文, 白树功. 高安全性无镍金属药物洗脱血管支架及其制造方法: 中国, 202010364623.2[P]. 2020-10-30.

    Li Wen, Bai Shugong. High safety nickel free metal drug eluting vascular stent and its manufacturing method: CN patent, 202010364623.2[P]. 2020-10-30.

    [87] 屈华鹏, 郎宇平, 陈海涛. 无磁钻铤用高氮不锈钢的研究和发展[J]. 热加工工艺, 2014, 43(24): 14 − 18.

    Qu Huapeng, Lang Yuping, Chen Haitao. Research and development on high nitrogen stainless steels used for non-magnetic drilling collar[J]. Hot Working Technology, 2014, 43(24): 14 − 18.

    [88] 屈华鹏, 郎宇平, 陈海涛. 一种无磁钻铤用高氮奥氏体不锈钢及其制造方法: 中国, 201711244575.8[P]. 2018-04-13.

    Qu Huapeng, Lang Yuping, Chen Haitao. A king of high nitrogen austenitic stainless steel for non-magnetic drill collars and the manufacturing method of it: CN patent, 201711244575.8[P]. 2018-04-13.

    [89] 秦国梁, 杨帆, 李长安. 高氮奥氏体不锈钢和无磁钻铤的轴向摩擦焊接工艺方法: 中国, 201810746344.5[P]. 2018-11-30.

    Qin Guoliang, Yang Fan, Li Changan. Axial friction welding process of high nitrogen austenitic stainless steel and non-magnetic drill collar: CN patent, 201810746344.5[P]. 2018-11-30.

    [90] 王宇, 彭翔飞, 李俊, 等. 高氮奥氏体不锈钢强韧化及抗弹性能研究进展[J]. 钢铁, 2022, 57(1): 28 − 38. doi: 10.13228/j.boyuan.issn0449-749x.20210373

    Wang Yu, Peng Xiangfei, Li Jun, et al. Research progress on strengthening mechanism and ballistic performance of high nitrogen austenitic stainless steels[J]. Iron Steel, 2022, 57(1): 28 − 38. doi: 10.13228/j.boyuan.issn0449-749x.20210373

    [91] 王红鸿, 孟庆润. 一种适用于高氮装甲钢焊接的高氮金属粉芯药芯焊丝: 中国, 201910521297.9[P]. 2019-08-30.

    Wang Honghong, Meng Qingrun. A high nitrogen metal powder cored flux cored wire for welding high nitrogen armor steel: CN patent, 201910521297.9[P]. 2019-08-30.

  • 期刊类型引用(0)

    其他类型引用(5)

图(4)
计量
  • 文章访问数:  446
  • HTML全文浏览量:  84
  • PDF下载量:  119
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-10-24
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2023-09-24

目录

    /

    返回文章
    返回