高级检索

模态试验法测试焊接残余应力机理分析及模型参数估计

甘世明, 徐艳文, 韩永全, 翟之平

甘世明, 徐艳文, 韩永全, 翟之平. 模态试验法测试焊接残余应力机理分析及模型参数估计[J]. 焊接学报, 2023, 44(8): 34-40. DOI: 10.12073/j.hjxb.20220928002
引用本文: 甘世明, 徐艳文, 韩永全, 翟之平. 模态试验法测试焊接残余应力机理分析及模型参数估计[J]. 焊接学报, 2023, 44(8): 34-40. DOI: 10.12073/j.hjxb.20220928002
GAN Shiming, XU Yanwen, HAN Yongquan, ZHAI Zhiping. Mechanism analysis and model parameters estimation of welding residual stress measurement based on modal test method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 34-40. DOI: 10.12073/j.hjxb.20220928002
Citation: GAN Shiming, XU Yanwen, HAN Yongquan, ZHAI Zhiping. Mechanism analysis and model parameters estimation of welding residual stress measurement based on modal test method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 34-40. DOI: 10.12073/j.hjxb.20220928002

模态试验法测试焊接残余应力机理分析及模型参数估计

基金项目: 国家自然科学基金资助项目(52165034);内蒙古自治区直属高校基本科研业务费项目 (JY20220214);内蒙古工业大学科学研究项目(BS2021033)
详细信息
    作者简介:

    甘世明,博士,副教授;主要从事焊接应力测试、信号分析处理;Email: 447172542@qq.com

    通讯作者:

    韩永全,博士,教授,博士研究生导师;Email: nmhyq@sina.com

  • 中图分类号: TG 456.2

Mechanism analysis and model parameters estimation of welding residual stress measurement based on modal test method

  • 摘要: 为避免残余应力对焊接结构的不利影响,保证其可靠性,需要探究残余应力分布. 模态试验法因具有快速和无损的特点,逐渐应用于残余应力测试. 为实现模态试验法测试焊接残余应力,通过振动理论分析了模态试验法的机理,获得了薄板焊件中残余应力与固有频率的关系;薄板焊件中的残余拉应力使固有频率减小,残余压应力使固有频率增大. 在此基础上,将钻孔法和模态试验相结合,借助数据拟合的方法,估计了模态试验法测试6 mm 7A52铝合金试板 VPPA-MIG(variable polarity plasma arc-metal inert gas)复合焊接残余应力的模型参数,确立了固有频率与残余应力的数值关系. 依据确立的数值关系,测得了7A52铝合金试板在不同复合焊接参数下的纵向残余应力分布. 结果表明,接头各区域的残余应力分布特征与钻孔法测得的结果基本一致,偏差在4%范围之内,估计出的模型参数能够保证模态试验法测试结果的可靠性,实现了焊接残余应力的快速和无损测试.
    Abstract: To reduce the negative influence of welding residual stress on the welded structure and guarantee the reliability of structure, it is necessary to explore the distribution of residual stress in the welded structure. Modal test method has been gradually applied in the measurement of residual stress due to its fast and non-destructive characteristics. In order to measure welding residual stress by modal test method, the mechanism of modal test method was analyzed by vibration theory, and the relationship between residual stress and natural frequency in thin plate welded structure was obtained. The residual tensile stress in the thin plate welded structure can cause the decrease of natural frequency, while the residual compressive stress can cause the increase of natural frequency. On the basis of theoretical analysis, the hole-drilling method and modal test experiment were combined, and the model parameters for measuring the residual stress of 6 mm 7A52 aluminum alloy(variable polarity plasma arc-metal inert gas, VPPA-MIG) hybrid welded plate using modal test method were estimated through the method of data fitting. The numerical relationship between natural frequency and residual stress was established. According to the established numerical relationship, the longitudinal residual stress distribution of 7A52 aluminum alloy plates under different hybrid welding parameters were measured through modal test experiment. The results illustrate that the distribution characteristics of residual stress measured by modal test method in each zone of the hybrid welded joint of 7A52 aluminum alloy plates are consistent with the results measured by hole-drilling method, and the deviation between the residual stress values measured by the two methods is within the range of 4%. Therefore, the estimated model parameters can guarantee the reliability of the measurement results of the modal test method. It has been achieved fast and non-destructive measurement of the welding residual stress using modal test method.
  • 图  1   残余应力与固有频率的关系曲线

    Figure  1.   Relation curve between residual stress and natural frequency

    图  2   焊接残余应力与固有频率的拟合过程

    Figure  2.   Fitting process of welding residual stress and natural frequency

    图  3   四边自由条件下模态试验过程

    Figure  3.   Modal test procedure under the condition of four sides free

    图  4   残余应力测量点分布示意图(mm)

    Figure  4.   Distribution of residual stress measuring points

    图  5   纵向残余应力与第5阶固有频率的拟合曲线

    Figure  5.   Fitting curves between the longitudinal residual stress and the fifth order natural frequency

    图  6   模态试验法与钻孔法测试结果对比

    Figure  6.   Comparison between the results measured by modal test method and hole-drilling method. (a) comparison of longitudinal residual stress; (b) error of longitudinal residual stress

    表  1   7A52铝合金薄板VPPA-MIG复合焊接电流参数

    Table  1   Hybrid welding current parameters for 7A52 aluminum alloy thin plates

    试验
    组别
    VPPA正极性电流
    I + /A
    VPPA反极性电流
    I /A
    MIG电流
    IMIG/ A
    1120139.2268
    2130150.8258
    3150174.0235
    4160185.6219
    5180208.8194
    下载: 导出CSV

    表  2   铝合金VPPA-MIG复合焊板前7阶固有频率测量值

    Table  2   Measured value of seventh-order natural frequencies for aluminum alloy VPPA-MIG hybrid welding plates

    试验组别试件编号固有频率f /Hz
    1阶2阶3阶4阶5阶6阶7阶
    2833848219511 5111 6721 816
    12853848209521 5091 6701 816
    2863858229521 5101 6721 815
    2823788139461 5051 6641 819
    42813798139471 5041 6641 819
    2803798159471 5051 6641 820
    2643507989361 4871 6461 798
    52653508009361 4871 6461 798
    2663517999361 4881 6461 779
    下载: 导出CSV

    表  3   纵向残余应力测量值

    Table  3   Measured value of longitudinal residual stress

    试验组别试件编号距离焊缝中心线不同位置的纵向焊接残余应力σx /MPa
    −60 mm−45 mm−20 mm−6 mm0 mm6 mm20 mm45 mm60 mm
    −194915120111919715353−24
    1−255415520511520216152−22
    −245114919711819815451−26
    −284517922614122318246−34
    4−344218523114022618645−29
    −254318622513222218243−33
    −483620524816424720538−47
    5−483520425016224921035−41
    −483520225216025520833−42
    下载: 导出CSV

    表  4   拟合判定系数

    Table  4   Fitting determination coefficients

    固有频率阶次纵向焊接残余应力与固有频率的拟合判定系数 R2
    A点B点C点D点E点
    30.9670.9860.9820.9280.911
    40.9800.9730.9540.9280.913
    50.9810.9910.9840.9570.916
    下载: 导出CSV
  • [1] 高望曦. 厚板焊接的表面残余应力测试方法研究[D]. 武汉: 武汉理工大学, 2011.

    Gao Wangxi. Study of the measurement about the residual stress in thickness plate weldment[D]. Wuhan: Wuhan University of Technology, 2011.

    [2]

    Gan Shiming, Liu Huaying, Zhai Zhiping, et al. A review of welding residual stress test methods[J]. China Welding, 2022, 31(2): 45 − 55.

    [3]

    Vieira A B Jr. Identification of stresses in rectangular plates from vibration responses, with application to welding residual stresses[D]. Brazil: Federal University of Uberlândia, 2003.

    [4]

    Abdelmoula F, Refassi K, Bouamama M, et al. Modal analysis of FSW plate considering the residual stresses effect[J]. Annales de Chimie:Science des Materiaux, 2021, 45(1): 75 − 82. doi: 10.18280/acsm.450110

    [5]

    Gharehbaghi H, Hosseini S, Hosseini R. Investigation of the effect of welding residual stress on natural frequencies, experimental and numerical study[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2022(12): s40997-022-00588(1-9).

    [6] 高永毅, 唐果, 万文. 具有焊接残余应力的矩形薄板固有频率计算方法研究[J]. 振动与冲击, 2014, 33(9): 165 − 167. doi: 10.13465/j.cnki.jvs.2014.09.030

    Gao Yongyi, Tang Guo, Wan Wen. Natural frequencies calculation of a quadrate thin plate with welding residual stress[J]. Journal of Vibration and Shock, 2014, 33(9): 165 − 167. doi: 10.13465/j.cnki.jvs.2014.09.030

    [7] 向宏霄. 焊接残余应力及其对结构振动特性影响研究[D]. 上海: 上海交通大学, 2020.

    Xiang Hongxiao. Welding residual stress and its effect on structural vibration characteristics[D]. Shanghai: Shanghai Jiao Tong University, 2020.

    [8] 陈炉云, 易宏. 含焊接残余应力薄圆板结构自由振动近似解[J]. 振动与冲击, 2021, 40(5): 119 − 125. doi: 10.13465/j.cnki.jvs.2021.05.016

    Chen Luyun, Yi Hong. Approximate solutionto free vibration of thin circular plate structure with welding residual stress[J]. Journal of Vibration and Shock, 2021, 40(5): 119 − 125. doi: 10.13465/j.cnki.jvs.2021.05.016

    [9]

    Chen Li, Wang Tianqi, Pan Jianrong, et al. Welding residual stress distribution of U-Rib stiffened plates of steel box girders and its influence on structural natural frequencies[J]. Frontiers in Materials, 2022, 9: 1 − 9.

    [10]

    Vieira A B Jr, Rade D A, Scotti A. Identification of welding residual stresses in rectangular plates using vibration responses[J]. Inverse Problems in Science and Engineering, 2006, 14(3): 313 − 331. doi: 10.1080/17415970500521361

    [11] 李传迎, 王秀刚, 吴兴文, 等. 基于模态法的高速列车车体关键位置应力谱及寿命评估研究[J]. 振动与冲击, 2022, 41(23): 10 − 18. doi: 10.13465/j.cnki.jvs.2022.23.002

    Li Chuanying, Wang Xiugang, Wu Xingwen, et al. Stress spectra and life estimation of key positions of high speed train car body based on modal method[J]. Journal of Vibration and Shock, 2022, 41(23): 10 − 18. doi: 10.13465/j.cnki.jvs.2022.23.002

    [12] 范高铭. 基于变分模态分解的残余应力检测及其评定方法研究[D]. 长春: 长春工业大学, 2019.

    Fan Gaoming. Research on the residual stress detection and evaluation based on variational mode decomposition[D]. Changchun: Changchun University of Technology, 2019.

    [13] 孟佑喜. 基于HHT振动信号能量分析的构件残余应力研究[D]. 长春: 长春理工大学, 2021.

    Meng Youxi. Research on residual stress of component based on energy analysis of HHT vibration signal[D]. Changchun: Changchun University of Science and Technology, 2021.

    [14]

    Das D, Das A K, Pratihar D K, et al. Prediction of residual stress in electron beam welding of stainless steel from process parameters and natural frequency of vibrations using machine-learning algorithms[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2021, 235(11): 2008 − 2021. doi: 10.1177/0954406220950343

    [15]

    Hong Haitao, Han Yongquan, Du Maohua, et al. Investigation on droplet momentum in VPPA-GMAW hybrid welding of aluminum alloys[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5-8): 2301 − 2308. doi: 10.1007/s00170-016-8381-2

    [16]

    Han Yongquan, Tong Jiahui, Hong Haitao, et al. The influence of hybrid arc coupling mechanism on GMAW arc in VPPA-GMAW hybrid welding of aluminum alloys[J]. International Journal of Advanced Manufacturing Technology, 2019, 101(1-4): 989 − 994. doi: 10.1007/s00170-018-3007-5

    [17] 韩蛟, 韩永全, 洪海涛, 等. 铝合金等离子-MIG复合焊接电弧行为[J]. 焊接学报, 2022, 43(2): 45 − 49. doi: 10.12073/j.hjxb.20210702001

    Han Jiao, Han Yongquan, Hong Haitao, et al. Arc behavior of plasma-MIG hybrid welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 43(2): 45 − 49. doi: 10.12073/j.hjxb.20210702001

    [18] 倪振华. 振动力学[M]. 西安: 西安交通大学出版社, 1989.

    Ni Zhenhua. Vibration mechanics[M]. Xi’an: Xi’an Jiaotong University Press, 1989.

    [19]

    Ge´Radin M, Rixen D. Mechanical vibrations-theory and application to structural dynamics[M]. UK: John Wiley & Sons, 1997.

    [20]

    Bassily S F, Dickinson S M. Buckling and lateral vibration of rectangular plates subject to in-plane loads-A Ritz approach[J]. Journal of Sound and Vibration, 1972, 24(2): 219 − 239. doi: 10.1016/0022-460X(72)90951-0

    [21]

    Young D. Vibratin of rectangular plates by the Ritz method[J]. Journal of Applied Mechanics, 1950, 17: 448 − 453. doi: 10.1115/1.4010175

    [22] 中国机械工程学会铸造分会. 铸造手册: 第一卷, 铸铁[M]. 北京: 机械工业出版社, 2010.

    Foundry Institution of Chinese Mechanical Engineering Society. Foundry Handbook: Volume 1, Cast Iron[M]. Beijing: China Machine Press, 2010.

  • 期刊类型引用(3)

    1. 饶德林,张瑞尧,S.Paddea,张书彦. 非均匀残余应力的钻孔法测量原理及应用. 中国测试. 2024(S1): 166-170 . 百度学术
    2. 苏昊,周蠡,张超. 大口径复合材料顶管接头应力分布模拟仿真. 粘接. 2024(09): 79-82 . 百度学术
    3. 潘寿虎,陈国仓,申东滨,倪俊国,秦璐璐. 动态汽车衡型式评价中关于“零点问题”的分析. 计量与测试技术. 2024(11): 74-75+78 . 百度学术

    其他类型引用(2)

图(6)  /  表(4)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  35
  • PDF下载量:  47
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-09-27
  • 网络出版日期:  2023-06-19
  • 刊出日期:  2023-08-16

目录

    /

    返回文章
    返回