Corrosion behavior of joints by electromagnetic pulse welding with aluminum to steel in neutral salt spray
-
摘要: 为了获得铝钢电磁脉冲焊接接头中性盐雾介质的腐蚀过程及机理,对5%NaCl腐蚀后的焊接接头进行拉剪试验,并采用带能谱的扫描电子显微镜进行断口微观形貌分析. 结果表明,铝钢电磁脉冲焊接接头中性盐雾腐蚀3天后的抗剪强度由原态74 MPa降为33 MPa,为原态的44.6%,腐蚀周期7天时,焊缝完全失效;在焊缝外围,粒子流击碎铝板表面氧化物生成粒状腐蚀物NaAlO2,焊缝上FeAl3破碎,露出铝被快速腐蚀为Al(OH)3;在铝板表面撞击产生凹坑和嵌入钢板表面片状铝的位置最先被腐蚀,NaCl液体堆积并在表层金属下流动腐蚀,且沿着腐蚀坑互连方向扩展,再向焊缝存在FeAl3相的连接区延伸;当氧化膜或焊缝被NaCl介质腐蚀抬起且破碎后,向着铝基体深层腐蚀,形成多而深的沟壑或凹坑,这成为接头快速失效的主要腐蚀机理.Abstract: In order to obtain the corrosion process and mechanism of joints by electromagnetic pulse(EMP) welded with aluminum to steel in neutral salt spray medium of 5%NaCl, shear test was performed and the shear fracture morphologies were analyzed by scanning electron microscopy. The results showed that the shear strength of the welded joint decreased from 74 MPa to 33 MPa after 3 days in the neutral salt spray corrosion, which was 44.6% of the original shear strength, and the weld failed completely after 7 days in corrosion. At the periphery of the weld, particle flow impacted the oxides at the surface of the aluminum plate to form granular corrosion NaAlO2, and FeAl3 at the weld was broken, exposing the aluminum to be rapidly corroded into Al(OH)3. Where the impact pits at the surface of the aluminum plate and the embedded aluminum metal at the surface of the steel plate was the place first to be corroded, NaCl liquids accumulated and flowed under the metal surface for corrosion, and expanded along the direction of corrosion pits interconnection, and then extended to the joint zone where FeAl3 phase existed in the weld. When the oxide or the weld was corroded by NaCl liquids and lifted and broken, it would be deeply corroded towards the aluminum matrix, and formed many and deep gullies or pits, which became the main corrosion mechanism of rapid joint failure.
-
-
表 1 6061铝合金和304不锈钢化学成分(质量分数,%)
Table 1 Chemical compositions of 6061 aluminum alloy and 304 stainless steel
材料 Cr Mn Mg Ni Si Zn Fe Al 6061 0.04 ~ 0.35 0.15 0.8 ~ 1.2 — 0.4 ~ 0.8 0.25 0.7 余量 304 0.4 ~ 0.8 ≤ 2.0 — 8.0 ~ 11.0 0.4 ~ 0.8 — 余量 — -
[1] Lu Zhenyang, Gong Wentao, Chen Shujun, et al. Interfacial microstructure and local bonding strength of magnetic pulse welding joint between commercially pure aluminum 1060 and AISI 304 stainless steel[J]. Journal of Manufacturing Processes, 2019, 46: 59 − 66. doi: 10.1016/j.jmapro.2019.07.041
[2] Zhang Changing, Liu Xiao, Jin Xin, et al. Study on resistance spot brazing process and joint performance of pure aluminum 1060/galvanized steel[J]. China Welding, 2021, 30(1): 37 − 42.
[3] 孟正华, 肖超, 钱多发, 等. 基于接头界面分析的钢/铝传动轴磁脉冲焊接工艺优化[J]. 精密成形工程, 2022, 14(3): 78 − 86. doi: 10.3969/j.issn.1674-6457.2022.03.010 Meng Zhenghua, Xiao Chao, Qian Duofa, et al. Optimization of magnetic pulse welding process for steel/aluminum drive shaft based on interface analyses[J]. Journal of Netshape Forming Engineering, 2022, 14(3): 78 − 86. doi: 10.3969/j.issn.1674-6457.2022.03.010
[4] Chi Luxin, Wang Xinxin, Liang Shifa, et al. Experimental study and numerical simulation of interfacial morphology by electromagnetic pulse welding with aluminum to steel[J]. Material Transaction, 2021, 62(9): 1343 − 1351. doi: 10.2320/matertrans.MT-M2021036
[5] Sravanthi S S, Acharyya S G, Chapala P. Effect of GMAW-brazing and cold metal transfer welding techniques on the corrosion behaviour of aluminium-steel lap joints[J]. Materials Today: Proceedings, 2019, 18: 2708 − 2716. doi: 10.1016/j.matpr.2019.07.133
[6] Chitturi V, Pedapati S R, Awang M. A review on process parameters and their effects on dissimilar friction stir welding of aluminium and steel alloys[J]. Material Science and Engineering, 2019, 551(1): 012003. doi: 10.1088/1757-899X/551/1/012003
[7] 李星昆, 何建萍. 复合板爆炸焊工艺研究现状及展望[J]. 轻工机械, 2021, 39(4): 1 − 4. doi: 10.3969/j.issn.1005-2895.2021.04.001 Li Xingkun, He Jianping. Research status and prospect of explosive welding technology for composite plates[J]. Light Industry Machinery, 2021, 39(4): 1 − 4. doi: 10.3969/j.issn.1005-2895.2021.04.001
[8] 陈俊明, 戴亚芬. 金属间化合物NiAl3, FeAl3和NiFeAl9的腐蚀和电化学性质[J]. 科学通报, 1963(6): 56 − 58. Chen Junming, Dai Yafen. Corrosion and electrochemical propertiesof intermetallic compounds NiAl3, FeAl3 and NiFeAl9[J]. Chinese Science Bulletin, 1963(6): 56 − 58.
[9] 赵嘉莹, 李龙, 周德敬, 等. 电站空冷用铝/铝/钢三层复合材料腐蚀行为的研究[J]. 热加工工艺, 2016, 45(2): 112 − 116. doi: 10.14158/j.cnki.1001-3814.2016.02.031 Zhao Jiaying, Li Long, Zhou Dejing, et al. Study on corrosion behavior of aluminum/ aluminum/steel clad material for air cooling system of thermal power plants[J]. Hot Working Technology, 2016, 45(2): 112 − 116. doi: 10.14158/j.cnki.1001-3814.2016.02.031
[10] Wang Shaoluo, Luo Kang, Sun Tao, et al. Corrosion behavior and failure mechanism of electromagnetic pulse welded joints between galvanized steel and aluminum alloy sheets[J]. Journal of Manufacturing Processes, 2021, 64: 937 − 947. doi: 10.1016/j.jmapro.2021.02.039
[11] 许冰, 欧航, 柳泉潇潇, 等. 5052铝合金-HC420LA高强钢磁脉冲焊接接头盐雾腐蚀性能[J]. 中国机械工程, 2019, 30(12): 1506 − 1511. doi: 10.3969/j.issn.1004-132X.2019.12.019 Xu Bing, Ou Hang, Liu Quanxiaoxiao, et al. Property of electromagnetic welded joints of 5052 aluminum alloy and HC420- LA high strength steel in salt fog corrosion[J]. China Mechanical Engineering, 2019, 30(12): 1506 − 1511. doi: 10.3969/j.issn.1004-132X.2019.12.019
[12] 金延野, 于海平. 板材电磁成形技术研究进展[J]. 精密成形工程, 2021, 13(5): 1 − 9. doi: 10.3969/j.issn.1674-6457.2021.05.001 Jin Yanye, Yu Haiping. Research development of electromagnetic forming technology in sheet metal[J]. Journal of Netshape Forming Engineering, 2021, 13(5): 1 − 9. doi: 10.3969/j.issn.1674-6457.2021.05.001
[13] Mihalkovic M, Widom M. Structure and stability of Al2Fe and Al5Fe2: first-principles total energy and phonon calculations[J]. Physical Review B, 2012, 85: 014113. doi: 10.1103/PhysRevB.85.014113
[14] 石玗, 梁琪, 张刚, 等. 激光毛化对铝/钢电弧熔钎焊接接头界面与性能的影响[J]. 焊接学报, 2020, 41(5): 25 − 29. Shi Yu, Liang Qi, Zhang Gang, et al. Effect of laser texturing on the interface and properties of aluminum/steel arc fusion brazed joints[J]. Transactions of the China Welding Institution, 2020, 41(5): 25 − 29.
[15] Li Yulong, Liu Yanru, Yang Jin, et al. First principle calculations and mechanical properties of the intermetallic compounds in a laser welded steel/aluminum joint[J]. Optics and Laser Technology, 2020, 122: 105875. doi: 10.1016/j.optlastec.2019.105875
[16] 闫飞, 周一凡, 唐本刊, 等. 基于磁控冶金的铝/钢异种金属焊接特性[J]. 焊接学报, 2022, 43(5): 98 − 103. doi: 10.12073/j.hjxb.20220101004 Yan Fei, Zhou Yifan, Tang Benkan, et al. Welding characteristics of Al/steel dissimilar metals based on magnetically controlled metallurgy[J]. Transactions of the China Welding Institution, 2022, 43(5): 98 − 103. doi: 10.12073/j.hjxb.20220101004
[17] Qi Junxiang, Miao Guanghong, Ai Jiuying, et al. Study on numerical simulation of TA1-304 stainless steel explosive welding[J]. China Welding, 2021, 30(2): 11 − 16.
[18] 毕志雄, 李雪交, 吴勇, 等. 钛箔/钢爆炸焊接的界面结合性能[J]. 焊接学报, 2022, 43(4): 81 − 85. Bi Zhixiong, Li Xuejiao, Wu Yong, et al. Interfacial bonding properties of titanium foil/steel explosive welding[J]. Transactions of the China Welding Institution, 2022, 43(4): 81 − 85.