高级检索

铝钢电磁脉冲焊接接头中性盐雾腐蚀行为

迟露鑫, 顾凌翔, 许惠斌, 黄岩, 覃全, 冉洋

迟露鑫, 顾凌翔, 许惠斌, 黄岩, 覃全, 冉洋. 铝钢电磁脉冲焊接接头中性盐雾腐蚀行为[J]. 焊接学报, 2023, 44(2): 40-47. DOI: 10.12073/j.hjxb.20220909003
引用本文: 迟露鑫, 顾凌翔, 许惠斌, 黄岩, 覃全, 冉洋. 铝钢电磁脉冲焊接接头中性盐雾腐蚀行为[J]. 焊接学报, 2023, 44(2): 40-47. DOI: 10.12073/j.hjxb.20220909003
CHI Luxin, GU Lingxiang, XU Huibin, HUANG Yan, QIN Quan, RAN Yang. Corrosion behavior of joints by electromagnetic pulse welding with aluminum to steel in neutral salt spray[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 40-47. DOI: 10.12073/j.hjxb.20220909003
Citation: CHI Luxin, GU Lingxiang, XU Huibin, HUANG Yan, QIN Quan, RAN Yang. Corrosion behavior of joints by electromagnetic pulse welding with aluminum to steel in neutral salt spray[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 40-47. DOI: 10.12073/j.hjxb.20220909003

铝钢电磁脉冲焊接接头中性盐雾腐蚀行为

基金项目: 国家自然科学基金资助项目(51805065);重庆市科委自然科学基金资助项目(cstc2020jcyj-msxmX0574);先进焊接与连接国家重点实验室开放课题研究资助项目(AWJ-19M02);重庆理工大学国家自然科学基金项目培育计划资助项目(2022PYZ013).
详细信息
    作者简介:

    迟露鑫,博士,副教授;主要从事异种金属电磁脉冲焊接连接机理及数值模拟研究;Email: chiluxin@cqut.edu.cn

  • 中图分类号: TG 456.9

Corrosion behavior of joints by electromagnetic pulse welding with aluminum to steel in neutral salt spray

  • 摘要: 为了获得铝钢电磁脉冲焊接接头中性盐雾介质的腐蚀过程及机理,对5%NaCl腐蚀后的焊接接头进行拉剪试验,并采用带能谱的扫描电子显微镜进行断口微观形貌分析. 结果表明,铝钢电磁脉冲焊接接头中性盐雾腐蚀3天后的抗剪强度由原态74 MPa降为33 MPa,为原态的44.6%,腐蚀周期7天时,焊缝完全失效;在焊缝外围,粒子流击碎铝板表面氧化物生成粒状腐蚀物NaAlO2,焊缝上FeAl3破碎,露出铝被快速腐蚀为Al(OH)3;在铝板表面撞击产生凹坑和嵌入钢板表面片状铝的位置最先被腐蚀,NaCl液体堆积并在表层金属下流动腐蚀,且沿着腐蚀坑互连方向扩展,再向焊缝存在FeAl3相的连接区延伸;当氧化膜或焊缝被NaCl介质腐蚀抬起且破碎后,向着铝基体深层腐蚀,形成多而深的沟壑或凹坑,这成为接头快速失效的主要腐蚀机理.
    Abstract: In order to obtain the corrosion process and mechanism of joints by electromagnetic pulse(EMP) welded with aluminum to steel in neutral salt spray medium of 5%NaCl, shear test was performed and the shear fracture morphologies were analyzed by scanning electron microscopy. The results showed that the shear strength of the welded joint decreased from 74 MPa to 33 MPa after 3 days in the neutral salt spray corrosion, which was 44.6% of the original shear strength, and the weld failed completely after 7 days in corrosion. At the periphery of the weld, particle flow impacted the oxides at the surface of the aluminum plate to form granular corrosion NaAlO2, and FeAl3 at the weld was broken, exposing the aluminum to be rapidly corroded into Al(OH)3. Where the impact pits at the surface of the aluminum plate and the embedded aluminum metal at the surface of the steel plate was the place first to be corroded, NaCl liquids accumulated and flowed under the metal surface for corrosion, and expanded along the direction of corrosion pits interconnection, and then extended to the joint zone where FeAl3 phase existed in the weld. When the oxide or the weld was corroded by NaCl liquids and lifted and broken, it would be deeply corroded towards the aluminum matrix, and formed many and deep gullies or pits, which became the main corrosion mechanism of rapid joint failure.
  • 图  1   铝钢电磁脉冲焊接原理

    Figure  1.   Principle of electromagnetic pulse welding with aluminum to steel. (a) impacting process with aluminum plate to steel plate; (b) particles flow at the collision moment

    图  2   焊件尺寸(mm)

    Figure  2.   Dimensions of weldment

    图  3   盐雾腐蚀介质中焊件和腐蚀试样

    Figure  3.   Weldments and corroded specimens in medium salt spray

    图  4   盐雾腐蚀试样焊缝断面SEM观察区域

    Figure  4.   SEM observation zone of weld section of salt spray corrosion sample

    图  5   不同腐蚀周期下焊缝断口形貌

    Figure  5.   Fracture morphology of weld under different corrosion periods. (a) aluminum plate; (b) steel plate

    图  6   焊件盐雾腐蚀性能变化情况

    Figure  6.   Properties variation of salt spray corrosion of weldment. (a) shear strength; (b) corrosion rate and corrosion weight loss

    图  7   不同腐蚀周期下铝侧焊缝腐蚀形貌

    Figure  7.   Corrosion morphology of aluminum weld under different corrosion periods

    图  8   焊缝的腐蚀方向

    Figure  8.   Corrosion direction of the weld

    图  9   图8中选区焊缝腐蚀后的形貌特征

    Figure  9.   Weld morphology after corrosion of the selection in Fig 8. (a) high magnification micromorphology; (b) Al element distribution; (c) Fe element distribution

    图  10   焊缝腐蚀产物及元素分布

    Figure  10.   Corrosion products and element distribution of weld

    图  11   碰撞瞬时金属表面的粒子特征

    Figure  11.   Particles characteristics at the instantaneous impact metal surface. (a) particles of surface metal; (b) moving velocity of particles

    图  12   焊缝结束位置金属粒子分布特征

    Figure  12.   Distribution characteristics of metal particles at the end of weld. (a) weld at aluminum side; (b) weld at steel side

    图  13   铝钢电磁脉冲焊接接头腐蚀机理

    Figure  13.   Corrosion mechanism of welded joint by electromagnetic pulse with aluminum to steel. (a) initial corrosion position of welded joint; (b) corrosion failure process of the weld

    表  1   6061铝合金和304不锈钢化学成分(质量分数,%)

    Table  1   Chemical compositions of 6061 aluminum alloy and 304 stainless steel

    材料CrMnMgNiSiZnFeAl
    60610.04 ~ 0.350.150.8 ~ 1.20.4 ~ 0.80.250.7余量
    3040.4 ~ 0.8≤ 2.08.0 ~ 11.00.4 ~ 0.8余量
    下载: 导出CSV
  • [1]

    Lu Zhenyang, Gong Wentao, Chen Shujun, et al. Interfacial microstructure and local bonding strength of magnetic pulse welding joint between commercially pure aluminum 1060 and AISI 304 stainless steel[J]. Journal of Manufacturing Processes, 2019, 46: 59 − 66. doi: 10.1016/j.jmapro.2019.07.041

    [2]

    Zhang Changing, Liu Xiao, Jin Xin, et al. Study on resistance spot brazing process and joint performance of pure aluminum 1060/galvanized steel[J]. China Welding, 2021, 30(1): 37 − 42.

    [3] 孟正华, 肖超, 钱多发, 等. 基于接头界面分析的钢/铝传动轴磁脉冲焊接工艺优化[J]. 精密成形工程, 2022, 14(3): 78 − 86. doi: 10.3969/j.issn.1674-6457.2022.03.010

    Meng Zhenghua, Xiao Chao, Qian Duofa, et al. Optimization of magnetic pulse welding process for steel/aluminum drive shaft based on interface analyses[J]. Journal of Netshape Forming Engineering, 2022, 14(3): 78 − 86. doi: 10.3969/j.issn.1674-6457.2022.03.010

    [4]

    Chi Luxin, Wang Xinxin, Liang Shifa, et al. Experimental study and numerical simulation of interfacial morphology by electromagnetic pulse welding with aluminum to steel[J]. Material Transaction, 2021, 62(9): 1343 − 1351. doi: 10.2320/matertrans.MT-M2021036

    [5]

    Sravanthi S S, Acharyya S G, Chapala P. Effect of GMAW-brazing and cold metal transfer welding techniques on the corrosion behaviour of aluminium-steel lap joints[J]. Materials Today: Proceedings, 2019, 18: 2708 − 2716. doi: 10.1016/j.matpr.2019.07.133

    [6]

    Chitturi V, Pedapati S R, Awang M. A review on process parameters and their effects on dissimilar friction stir welding of aluminium and steel alloys[J]. Material Science and Engineering, 2019, 551(1): 012003. doi: 10.1088/1757-899X/551/1/012003

    [7] 李星昆, 何建萍. 复合板爆炸焊工艺研究现状及展望[J]. 轻工机械, 2021, 39(4): 1 − 4. doi: 10.3969/j.issn.1005-2895.2021.04.001

    Li Xingkun, He Jianping. Research status and prospect of explosive welding technology for composite plates[J]. Light Industry Machinery, 2021, 39(4): 1 − 4. doi: 10.3969/j.issn.1005-2895.2021.04.001

    [8] 陈俊明, 戴亚芬. 金属间化合物NiAl3, FeAl3和NiFeAl9的腐蚀和电化学性质[J]. 科学通报, 1963(6): 56 − 58.

    Chen Junming, Dai Yafen. Corrosion and electrochemical propertiesof intermetallic compounds NiAl3, FeAl3 and NiFeAl9[J]. Chinese Science Bulletin, 1963(6): 56 − 58.

    [9] 赵嘉莹, 李龙, 周德敬, 等. 电站空冷用铝/铝/钢三层复合材料腐蚀行为的研究[J]. 热加工工艺, 2016, 45(2): 112 − 116. doi: 10.14158/j.cnki.1001-3814.2016.02.031

    Zhao Jiaying, Li Long, Zhou Dejing, et al. Study on corrosion behavior of aluminum/ aluminum/steel clad material for air cooling system of thermal power plants[J]. Hot Working Technology, 2016, 45(2): 112 − 116. doi: 10.14158/j.cnki.1001-3814.2016.02.031

    [10]

    Wang Shaoluo, Luo Kang, Sun Tao, et al. Corrosion behavior and failure mechanism of electromagnetic pulse welded joints between galvanized steel and aluminum alloy sheets[J]. Journal of Manufacturing Processes, 2021, 64: 937 − 947. doi: 10.1016/j.jmapro.2021.02.039

    [11] 许冰, 欧航, 柳泉潇潇, 等. 5052铝合金-HC420LA高强钢磁脉冲焊接接头盐雾腐蚀性能[J]. 中国机械工程, 2019, 30(12): 1506 − 1511. doi: 10.3969/j.issn.1004-132X.2019.12.019

    Xu Bing, Ou Hang, Liu Quanxiaoxiao, et al. Property of electromagnetic welded joints of 5052 aluminum alloy and HC420- LA high strength steel in salt fog corrosion[J]. China Mechanical Engineering, 2019, 30(12): 1506 − 1511. doi: 10.3969/j.issn.1004-132X.2019.12.019

    [12] 金延野, 于海平. 板材电磁成形技术研究进展[J]. 精密成形工程, 2021, 13(5): 1 − 9. doi: 10.3969/j.issn.1674-6457.2021.05.001

    Jin Yanye, Yu Haiping. Research development of electromagnetic forming technology in sheet metal[J]. Journal of Netshape Forming Engineering, 2021, 13(5): 1 − 9. doi: 10.3969/j.issn.1674-6457.2021.05.001

    [13]

    Mihalkovic M, Widom M. Structure and stability of Al2Fe and Al5Fe2: first-principles total energy and phonon calculations[J]. Physical Review B, 2012, 85: 014113. doi: 10.1103/PhysRevB.85.014113

    [14] 石玗, 梁琪, 张刚, 等. 激光毛化对铝/钢电弧熔钎焊接接头界面与性能的影响[J]. 焊接学报, 2020, 41(5): 25 − 29.

    Shi Yu, Liang Qi, Zhang Gang, et al. Effect of laser texturing on the interface and properties of aluminum/steel arc fusion brazed joints[J]. Transactions of the China Welding Institution, 2020, 41(5): 25 − 29.

    [15]

    Li Yulong, Liu Yanru, Yang Jin, et al. First principle calculations and mechanical properties of the intermetallic compounds in a laser welded steel/aluminum joint[J]. Optics and Laser Technology, 2020, 122: 105875. doi: 10.1016/j.optlastec.2019.105875

    [16] 闫飞, 周一凡, 唐本刊, 等. 基于磁控冶金的铝/钢异种金属焊接特性[J]. 焊接学报, 2022, 43(5): 98 − 103. doi: 10.12073/j.hjxb.20220101004

    Yan Fei, Zhou Yifan, Tang Benkan, et al. Welding characteristics of Al/steel dissimilar metals based on magnetically controlled metallurgy[J]. Transactions of the China Welding Institution, 2022, 43(5): 98 − 103. doi: 10.12073/j.hjxb.20220101004

    [17]

    Qi Junxiang, Miao Guanghong, Ai Jiuying, et al. Study on numerical simulation of TA1-304 stainless steel explosive welding[J]. China Welding, 2021, 30(2): 11 − 16.

    [18] 毕志雄, 李雪交, 吴勇, 等. 钛箔/钢爆炸焊接的界面结合性能[J]. 焊接学报, 2022, 43(4): 81 − 85.

    Bi Zhixiong, Li Xuejiao, Wu Yong, et al. Interfacial bonding properties of titanium foil/steel explosive welding[J]. Transactions of the China Welding Institution, 2022, 43(4): 81 − 85.

  • 期刊类型引用(12)

    1. 牛宗冉,莫文剑,袁志钟,易翠,王致远. 铜磷锡镍粉末钎料的钎焊性能和显微组织. 粉末冶金工业. 2025(01): 31-37 . 百度学术
    2. 钟素娟,秦建,王蒙,崔大田,龙伟民. CuSn预合金粉芯复合银钎料的润湿铺展机理. 焊接学报. 2023(02): 16-21+129-130 . 本站查看
    3. 郭亚东,陈明亮. 黄铜Type-C接口绿激光焊接工艺研究. 热加工工艺. 2022(09): 148-150 . 百度学术
    4. 张冠星,钟素娟,董媛媛,刘晓芳,常云峰,薛行雁. 焊后钎剂残渣腐蚀行为分析. 焊接. 2022(11): 47-53 . 百度学术
    5. 王蒙,张冠星,钟素娟,沈元勋,龙伟民,董宏伟,刘晓芳. 低熔合金粉末对药芯银钎料钎焊过程的影响. 稀有金属材料与工程. 2021(08): 2859-2866 . 百度学术
    6. 刘捷,黄建林,任刚,黄映杰. 黄铜-钢异种金属激光熔覆技术研究及应用. 江西科学. 2021(06): 1077-1079 . 百度学术
    7. 刘晓芳,张冠星,常云峰,王蒙,钟素娟. 干燥过滤器焊后泄露原因. 焊接. 2021(10): 34-37+62-63 . 百度学术
    8. 李华晨,周广涛,陈梅峰,刘雪松,崔贺鹏,杨浩. 分步气体介质下低功率激光焊接薄板紫铜成形及组织和性能. 焊接学报. 2020(10): 65-72+101 . 本站查看
    9. 王毅. 黄铜与铝合金纳秒激光焊接的工艺研究. 材料保护. 2020(12): 91-94+105 . 百度学术
    10. 张敏霞,潘光勇,鲍熠朗. 空调四通阀焊缝泄漏原因分析. 理化检验(物理分册). 2019(12): 859-863 . 百度学术
    11. 于奇,潘建军,于新泉,纠永涛,鲍丽. 微量硅元素对铜磷锡粉状钎料性能的影响. 焊接. 2019(10): 17-20+66 . 百度学术
    12. 刘文东,李红. 黄铜与不锈钢异种金属激光焊接工艺研究. 应用激光. 2019(06): 966-969 . 百度学术

    其他类型引用(1)

图(13)  /  表(1)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  53
  • PDF下载量:  69
  • 被引次数: 13
出版历程
  • 收稿日期:  2022-09-08
  • 网络出版日期:  2023-02-13
  • 刊出日期:  2023-02-24

目录

    /

    返回文章
    返回