高级检索

随焊高速气流场辅助高强铝合金薄板焊接应力演变及控制变形机理

周广涛, 胡庆睿, 刘彪, 宋威, 郭玉龙, 余作恒

周广涛, 胡庆睿, 刘彪, 宋威, 郭玉龙, 余作恒. 随焊高速气流场辅助高强铝合金薄板焊接应力演变及控制变形机理[J]. 焊接学报, 2023, 44(2): 32-39. DOI: 10.12073/j.hjxb.20220909001
引用本文: 周广涛, 胡庆睿, 刘彪, 宋威, 郭玉龙, 余作恒. 随焊高速气流场辅助高强铝合金薄板焊接应力演变及控制变形机理[J]. 焊接学报, 2023, 44(2): 32-39. DOI: 10.12073/j.hjxb.20220909001
ZHOU Guangtao, HU Qingrui, LIU Biao, SONG Wei, GUO Yulong, YU Zuoheng. Assisting controlling of deformation mechanism and stress evolution in high-strength aluminum alloy thin plate welding by trailing hybrid high-speed gas fluid field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 32-39. DOI: 10.12073/j.hjxb.20220909001
Citation: ZHOU Guangtao, HU Qingrui, LIU Biao, SONG Wei, GUO Yulong, YU Zuoheng. Assisting controlling of deformation mechanism and stress evolution in high-strength aluminum alloy thin plate welding by trailing hybrid high-speed gas fluid field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 32-39. DOI: 10.12073/j.hjxb.20220909001

随焊高速气流场辅助高强铝合金薄板焊接应力演变及控制变形机理

基金项目: 国家自然科学基金资助项目(52105403);福建省自然科学基金资助项目 (2021J01299);新工科示范课程建设资助项目(XGK2021-3);中国博士后科学基金资助项目(2021M702753).
详细信息
    作者简介:

    周广涛,博士,副教授;主要从事焊接变形及控制方面的研究;Email: zhouguangtao@hqu.edu.cn

  • 中图分类号: TG 444.7

Assisting controlling of deformation mechanism and stress evolution in high-strength aluminum alloy thin plate welding by trailing hybrid high-speed gas fluid field

  • 摘要: 从力学角度出发提出了“随焊高速气流场”柔性控制高强铝合金薄板焊接失稳变形的新方法,研究了该方法控制2A12高强铝合金薄板焊接变形的有效可行性,分析了随焊高速气流载荷对薄板应力演变规律的影响,阐明了其控制焊接残余应力及变形机理. 基于有限元法分析了温度场及应力场,确定了气动载荷与热源作用距离这一关键因素,并获得了气体压力的合理有效范围. 在自行研制的随焊高速气流场装置上进行试验验证. 结果表明,当气动载荷作用距离为20 mm、气动载荷为30 MPa时,焊接失稳变形基本消失,焊缝中截面上的纵向残余拉应力峰值较常规焊下降了77.73%,残余压应力峰值下降了69.23%,板边变形最大挠度仅为0.9 mm,较常规焊的8.5 mm下降了89.41 %. 试验结果与模拟结果吻合良好,验证了随焊控制模型的正确性.
    Abstract: A new method of welding with trailing gas fluid field to control flexibly unstable deformation of high-strength aluminum alloy 2A12 thin plate, and the feasibility was analyzed. The influence of high-speed gas fluid load on the welding stress evolution law of the thin plate was studied. The mechanism of controlling of welding residual stress and deformation was illustrated. Based on the finite element method, the temperature field and stress field were analyzed to determine the distance between aerodynamic load and heat source, which was the key factor, obtaining the reasonable and effective range of gas pressure. Welding experiments were conducted using a self-developed device. The results show that when the distance between aerodynamic load and heat source is 20 mm and the gas pressure is 30 MPa, the welding instability deformation is basically eliminated . The longitudinal residual tensile stress peak value on the cross section of the weld seam decreases by 77.73% compared to conventional welding, and the residual compressive stress peak value decreases by 69.23%. The maximum deflection of the plate edge deformation is only 0.9 mm, which is a drop of 89.41% compared to 8.5 mm of conventional welding. The experimental results are in good agreement with the simulation results.
  • 图  1   随焊高速气流场控制薄板焊接变形原理图

    Figure  1.   Schematic diagram of distortion controlled by trailing hybrid high-speed gas fluid field

    图  2   气动载荷施加原理模型

    Figure  2.   Principle model of aerodynamic load application

    图  3   铝合金薄板模型图

    Figure  3.   Welding model diagram of aluminum alloy sheet

    图  4   双椭球热源修正模型

    Figure  4.   Modified model of double ellipsoid heat source

    图  5   不同条件下相同位置处温度历程曲线

    Figure  5.   Temperature history curves at the same location under different conditions

    图  6   距热源不同距离的温度和屈服强度的关系

    Figure  6.   Relationship between temperature and yield strength at different distances from the heat source

    图  7   纵向残余应力对比

    Figure  7.   Comparison of longitudinal residual stresses

    图  8   焊后变形对比

    Figure  8.   Comparison of deformation after welding. (a) conventional welding; (b) welding with trailing hybrid high-speed gas fluid field

    图  9   中截面不同时刻纵向焊接应力的演变过程

    Figure  9.   Evolution of longitudinal welding stresses in the middle section at different moments

    图  10   各点纵向焊接应力随焊接时间的变化曲线

    Figure  10.   Variation curve of longitudinal welding stress at each point with welding time

    图  11   焊接瞬时温度场分布

    Figure  11.   Welding transient temperature field distribution. (a) longitudinal observation; (b) transverse observation

    图  12   热循环对比曲线

    Figure  12.   Thermal cycle comparison curve

    图  13   应变片的位置分布

    Figure  13.   Strain gauge position distribution

    图  14   纵向残余应力对比

    Figure  14.   Comparison of longitudinal residual stress

    图  15   挠度测量结果

    Figure  15.   Deflection measurement results

    表  1   材料性能参数

    Table  1   Material performance parameters

    温度T/℃弹性模量E/GPa线膨胀系数α/10−6−1屈服极限σs/MPa比热c/(J·kg−1·℃−1)热导率K/(W·m−1·℃−1)
    2070.022.8300900117
    10060.823.1280921121
    20054.424.72401 005126
    30043.125.51601 047130
    40032.026.51131 089138
    下载: 导出CSV

    表  2   不同气动载荷作用距离下的等效应力

    Table  2   Equivalent stress with different aerodynamic loading distances

    气动载荷作用距离d/mm气动载荷P/MPa
    1216202428325 ~ 155 ~ 255 ~ 3510 ~ 4010 ~ 8010 ~ 120
    下载: 导出CSV

    表  3   自动钨极氩弧焊的焊接工艺参数

    Table  3   Welding process parameters of automatic TIG welding

    板厚B/mm钨极直径D/mm焊接电流I/A电弧电压U/V焊接速度v/(mm·s−1)氩气流量Q/(L·min−1)
    21.69512 ~ 15417
    下载: 导出CSV
  • [1] 李永兵, 马运五, 楼铭, 等. 轻量化多材料汽车车身连接技术进展[J]. 机械工程学报, 2016, 52(24): 1 − 23. doi: 10.3901/JME.2016.24.001

    Li Yongbing, Ma Yunwu, Lou Ming, et al. Advances in lightweight multi-material automotive body joining technology[J]. Chinese Journal of Mechanical Engineering, 2016, 52(24): 1 − 23. doi: 10.3901/JME.2016.24.001

    [2] 龙江启, 兰凤崇, 陈吉清. 车身轻量化与钢铝一体化结构新技术的研究进展[J]. 机械工程学报, 2008, 44(6): 27 − 35. doi: 10.3901/JME.2008.06.027

    Long Jiangqi, Lan Fengchong, Chen Jiqing. Research progress of new technology of body lightweight and steel-aluminum integrated structure[J]. Chinese Journal of Mechanical Engineering, 2008, 44(6): 27 − 35. doi: 10.3901/JME.2008.06.027

    [3] 陈中革, 郭涛, 张建勋. 基于体壳耦合模型的钛合金薄板激光焊接变形分析[J]. 焊接学报, 2016, 37(5): 45 − 48.

    Chen Zhongge, Guo Tao, Zhang Jianxun. Deformation analysis of laser welding of titanium alloy sheet based on body shell coupling model[J]. Transactions of the China Welding Institution, 2016, 37(5): 45 − 48.

    [4] 孙向伟, 殷咸青, 王江超, 等. 采用三维光学测量技术对薄板焊接失稳变形的分析[J]. 焊接学报, 2013, 34(6): 109 − 112,118.

    Sun Xiangwei, Yin Xianqing, Wang Jiangchao, et al. Analysis of welding instability deformation of thin plate by three-dimensional optical measurement technology[J]. Transactions of the China Welding Institution, 2013, 34(6): 109 − 112,118.

    [5] 高双胜, 曲伸, 杨烁, 等. 航空发动机薄壁机匣疲劳裂纹修复焊接变形控制[J]. 焊接学报, 2016, 37(4): 95 − 97.

    Gao Shuangsheng, Qu Shen, Yang Shuo, et al. Welding deformation control of fatigue crack repair of aeroengine thin-walled casing[J]. Transactions of the China Welding Institution, 2016, 37(4): 95 − 97.

    [6] 李永奎, 权纯逸, 陆善平, 等. TA15钛合金薄壁焊接件热处理校形研究[J]. 金属学报, 2016, 52(3): 281 − 288.

    Li Yongkui, Quan Chunyi, Lu Shanping, et al. Heat treatment calibration study of thin-walled welded parts of TA15 titanium alloy[J]. Acta Metallurgica Sinica, 2016, 52(3): 281 − 288.

    [7]

    Chihoski R A. Expansion and stress around aluminum weld puddles[J]. Welding Journal, 1979, 58(9): 263s − 276s.

    [8]

    Dae Yong Kim, Hyeon Il Park, Ji Hoon Kim, et al. Numerical analysis for process parameter effect in electromagnetic impact welding of aluminum alloy sheet[J]. Applied Mechanics and Materials, 2014, 3147: 548 − 549.

    [9] 王佳宁. 车用铝合金薄板双脉冲MIG焊接头的非匹配成型及力学性能研究[D]. 长春: 吉林大学, 2022.

    Wang Jianing. Research on the mismatched formability and mechanical properties of double-pulse MIG welded joints in aluminum alloy sheets for automotive applications[D]. Changchun: Jilin University, 2022.

    [10] 王浩, 肖纳敏, 李惠曲, 等. 7050铝合金结构件热处理与冷成形过程残余应力演化规律的数值模拟[J]. 材料工程, 2021, 49(8): 72 − 80.

    Wang Hao, Xiao Namin, Li Huiqu, et al. Modeling of residual stress evolution of 7050 aluminium alloy component during heat treatment and cold forming[J]. Journal of Materials Engineering, 2021, 49(8): 72 − 80.

    [11] 闫德俊, 王赛, 郑文健, 等. 1561铝合金薄板随焊干冰激冷变形控制[J]. 机械工程学报, 2019, 55(6): 67 − 73. doi: 10.3901/JME.2019.06.067

    Yan Dejun, Wang Sai, Zheng Wenjian, et al. Deformation control of 1561 aluminum alloy sheet by dry ice cooling with welding[J]. Chinese Journal of Mechanical Engineering, 2019, 55(6): 67 − 73. doi: 10.3901/JME.2019.06.067

    [12] 周广涛, 黄海瀚, 方洪渊, 等. 随焊超声波激振法控制铝合金薄板焊接应力及变形[J]. 中国有色金属学报, 2014, 24(4): 919 − 925.

    Zhou Guangtao, Huang Haihan, Fang Hongyuan, et al. Control of welding stress and deformation of aluminum alloy sheet by ultrasonic excitation method[J]. Chinese Journal of Nonferrous Metals, 2014, 24(4): 919 − 925.

    [13] 郭绍庆, 徐文立, 刘雪松, 等. 温差拉伸控制铝合金薄板的焊接变形[J]. 焊接学报, 1999, 20(1): 36 − 44.

    Guo Shaoqing, Xu Wenli, Liu Xuesong, et al. Control of welding deformation of aluminum alloy sheet by temperature difference tension[J]. Transactions of the China Welding Institution, 1999, 20(1): 36 − 44.

    [14] 罗宇, 邓德安, 江晓玲, 等. 热变形的固有应变预测法及实例[J]. 焊接学报, 2006, 27(5): 17 − 20,114.

    Luo Yu, Deng De'an, Jiang Xiaoling, et al. Natural strain prediction method and example of thermal deformation[J]. Transactions of the China Welding Institution, 2006, 27(5): 17 − 20,114.

    [15]

    John Goldak, Aditya Chakravarti, Malcolm Bibby, et al. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984(15B): 302 − 306.

  • 期刊类型引用(0)

    其他类型引用(1)

图(15)  /  表(3)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  41
  • PDF下载量:  74
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-09-08
  • 网络出版日期:  2023-02-28
  • 刊出日期:  2023-02-24

目录

    /

    返回文章
    返回