高级检索

SLM和SLM + HT成形TA17合金的微观组织与变体选择特征

付超, 芦丽莉, 袁军, 叶义海, 黄卫东

付超, 芦丽莉, 袁军, 叶义海, 黄卫东. SLM和SLM + HT成形TA17合金的微观组织与变体选择特征[J]. 焊接学报, 2023, 44(7): 109-115. DOI: 10.12073/j.hjxb.20220908003
引用本文: 付超, 芦丽莉, 袁军, 叶义海, 黄卫东. SLM和SLM + HT成形TA17合金的微观组织与变体选择特征[J]. 焊接学报, 2023, 44(7): 109-115. DOI: 10.12073/j.hjxb.20220908003
FU Chao, LU Lili, YUAN Jun, YE Yihai, HUANG Weidong. Microstructure transformation and variant selection of SLM and SLM + HT formed TA17 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 109-115. DOI: 10.12073/j.hjxb.20220908003
Citation: FU Chao, LU Lili, YUAN Jun, YE Yihai, HUANG Weidong. Microstructure transformation and variant selection of SLM and SLM + HT formed TA17 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 109-115. DOI: 10.12073/j.hjxb.20220908003

SLM和SLM + HT成形TA17合金的微观组织与变体选择特征

详细信息
    作者简介:

    付超,博士,副研究员;主要研究方向为特种设备焊接工艺及机理;Email: fuchao0625@163.com

  • 中图分类号: TG 441

Microstructure transformation and variant selection of SLM and SLM + HT formed TA17 alloy

  • 摘要: 为了系统认识选区激光熔化(selective laser melting, SLM)成形TA17合金微观组织特征,对SLM和SLM + 热处理(heat treatment, HT)两种状态下TA17合金的微观组织进行表征和分析. 结果表明,在极快的冷却条件下,SLM成形的TA17钛合金形成了以细小针状α相为主的微观组织,其织构类型主要为{0 0 0 1} < 1 0 −1 0 >、{1 0 −1 0} < 1 1 −2 0 >及{1 1 −2 0} < 1 0 −1 0 >3类板织构,且变体具有明显选择性特征,倾向于析出60°/[1 1 −2 0]和60.83°/[−1.377 −1 2.377 0.359]两类变体. 在950 ℃/2 h + 空冷后,TA17合金形成双态α相组织,组织形貌为典型的等轴状 + 板条状,织构散漫程度增加,强度显著降低,变体选择发生变化,60°/[1 1 −2 0]和60.83°/[−1.377 −1 2.377 0.359]两类变体减少,转变为63.26°/[−10 5 5 −3]类变体.
    Abstract: In order to systematically investigate the microstructure transformation mechanism of selective laser melting(SLM) formed TA17 alloy, the microstructures of TA17 alloy were characterized and analyzed under SLM and SLM + heat treatment(HT). The results show that under extremely fast cooling conditions, the microstructure of TA17 is dominated by fine needle-shape α phase, with plate textures {0 0 0 1} < 1 0 −1 0 >, {1 0 −1 0} < 1 1 −2 0 > and {1 1 −2 0} < 1 0 −1 0 > as main types; and two types of variants, namely the 60°/[1 1 −2 0] and 60.83°/[−1.377 −1 2.377 0.359], are inclined to be generated. While after a treatment of 950 °C/2 h + air cooling, a dual state α structure is formed on the TA17 alloy with typical equiaxed grains and a plate-like morphology. With the increase in the degree of texture dispersion, the strength decreased significantly. There was also a change in variant selection, as the proportion of 60°/[1 1 −2 0] and 60.83°/[−1.377 −1 2.377 0.359] variants decreased significantly, 63.26°/[−10 5 5 −3] become the major variant.
  • 图  1   SLM成形TA17合金Micro-CT表征结果

    Figure  1.   Micro-CT characterization results of SLM formed TA17 alloy

    图  2   SLM和SLM + HT成形TA17合金SEM形貌

    Figure  2.   SEM morphology of TA17 alloy formed by SLM and SLM + HT. (a) SLM−perpendicular to printing direction; (b) SLM−parallel to printing direction; (c) SLM + HT−perpendicular to printing direction; (d) SLM + HT−parallel to printing direction

    图  3   SLM和SLM + HT成形TA17合金的IPF

    Figure  3.   IPF of TA17 alloy formed by SLM and SLM + HT. (a) SLM−perpendicular to printing direction; (b) SLM−parallel to printing direction; (c) SLM + HT−perpendicular to printing direction; (d) SLM + HT−parallel to printing direction

    图  4   SLM和SLM + HT成形TA17合金IPF

    Figure  4.   IPF of TA17 alloy formed by SLM and SLM + HT. (a) SLM;(b) SLM + HT

    图  5   SLM和SLM + HT成形TA17合金相邻板条之间的界面角度分布

    Figure  5.   Distribution of boundary angle between adjacent laths of SLM and SLM + HT formed TA17 alloy

    图  6   SLM和SLM + HT成形TA17合金β母相重构结构

    Figure  6.   Reconstructed β parent phase of SLM and SLM + HT formed TA17 alloy. (a) SLM−perpendicular to printing direction; (b) SLM + HT−perpendicular to printing direction

    图  7   SLM成形TA17合金不同变体取向

    Figure  7.   Different variant orientations of SLM formed TA17 alloy

    图  8   SLM + HT成形TA17合金不同变体取向

    Figure  8.   Different variant orientations of SLM + HT formed TA17 alloy

    表  1   SLM成形用TA17合金粉末成分(质量分数,%)

    Table  1   Compositions of TA17 powder for SLM

    Al V C O N H Zr Fe 其它 Ti
    3.8 ~ 5.0 1.4 ~ 2.5 ≤0.04 ≤0.15 ≤0.04 ≤0.006 ≤0.30 ≤0.25 ≤0.30 余量
    下载: 导出CSV

    表  2   SLM制造工艺参数及粉末粒度范围

    Table  2   SLM process and particle size range of TA17 powder

    激光功率P/W 打印速率v/(mm·s−1) 层间距δ/mm 粉末粒度d/μm
    240 1200 0.14 16 ~ 51
    下载: 导出CSV

    表  3   与β相具有Burgers取向关系的12个α相变体[17,19]

    Table  3   12 α variants with Burgers orientation relationship to β phase

    序号 取向关系 与A的旋转角θ/(°) 与A的旋转轴
    A (0 0 0 1)α//(1 −1 0)β, [1 1 −2 0]α//[1 1 1]β
    B (0 0 0 1)α//(1 0 −1)β, [1 1 −2 0]α//[1 1 1]β 60 [1 1 −2 0]
    C (0 0 0 1)α//(0 1 −1)β, [1 1 −2 0]α//[1 1 1]β 60 [1 1 −2 0]
    D (0 0 0 1)α//(1 1 0)β, [1 1 −2 0]α//[1 1 1]β 90 [1 −2.38 1.38 0]
    E (0 0 0 1)α//(1 0 1)β, [1 1 −2 0]α//[1 1 1]β 63.26 [−10 5 5 −3]
    F (0 0 0 1)α//(0 1 −1)β, [1 1 −2 0]α//[1 1 1]β 60.83 [−1.377 −1 2.377 0.359]
    G (0 0 0 1)α//(1 1 0)β, [1 1 −2 0]α//[1 1 1]β 90 [1 −2.38 1.38 0]
    H (0 0 0 1)α//(1 0 −1)β, [1 1 −2 0]α//[1 1 1]β 60.83 [−1.377 −1 2.377 0.359]
    I (0 0 0 1)α//(0 1 1)β, [1 1 −2 0]α//[1 1 1]β 63.26 [−10 5 5 −3]
    J (0 0 0 1)α//(1 −1 0)β, [1 1 −2 0]α//[1 1 1]β 10.53 [0 0 0 1]
    K (0 0 0 1)α//(1 0 1)β, [1 1 −2 0]α//[1 1 1]β 60.83 [−1.377 −1 2.377 0.359]
    L (0 0 0 1)α//(0 1 1)β, [1 1 −2 0]α//[1 1 1]β 60.83 [−1.377 −1 2.377 0.359]
    下载: 导出CSV
  • [1] 张喜燕, 赵永庆, 白晨光. 钛合金及应用[M]. 北京: 化工工业出版社, 2005.

    Zhang Xiyan, Zhao Yongqing, Bai Chenguang. Titanium alloys and applications[M]. Beijing: Chemical Industry Press, 2005.

    [2]

    Short A B. Gas tungsten arc welding of α + β titanium alloys: a review[J]. Metal Science Journal, 2009, 25(3): 309 − 324.

    [3] 金和喜, 魏克湘, 李建明, 等. 航空用钛合金研究进展[J]. 中国有色金属学报, 2015, 25(2): 280 − 292.

    Jin Hexi, Wei Kexiang, Li Jianming, et al. Research development of titanium alloy in aerospace industry[J]. The Chinses Journal of Nonferrous Metals, 2015, 25(2): 280 − 292.

    [4] 孟圣昊, 司昌健, 任逸群, 等. 中厚板TC4钛合金真空环境激光焊接特性[J]. 焊接学报, 2021, 42(8): 40 − 48.

    Meng Shenghao, Si Changjian, Ren Yiqun et al. Study on laser welding characteristics of thick wall TC4 titanium alloy in vacuum environment[J]. Transactions of the China Welding Institution, 2021, 42(8): 40 − 48.

    [5] 习文顺, 任鑫焱, 张金元, 等. 高速列车TC4钛合金焊接构架强度及寿命评估[J]. 焊接学报, 2022, 43(5): 29 − 35.

    Xi Wenshun, Ren Xinyan, Zhang Jinyuan, et al. Strength and life assessment of TC4 titanium alloy welded frame for high-speed railway vehicles[J]. Transactions of the China Welding Institution, 2022, 43(5): 29 − 35.

    [6] 张义文. 增材制造用钛合金粉末和高温合金粉末的生产[J]. 粉末冶金工业, 2016, 26(1): 76.

    Zhang Yiwen. Production of titanium alloy powder and high-temperature alloy powder for additive manufacturing[J]. Powder Metallurgy Industry, 2016, 26(1): 76.

    [7] 魏明炜, 陈岁元, 郭快快, 等. EIGA法制备激光3D打印用TA15钛合金粉末[J]. 材料导报, 2017, 31(12): 64 − 67,78. doi: 10.11896/j.issn.1005-023X.2017.012.014

    Wei Mingwei, Chen Suiyuan, Guo Kuaikuai, et al. Preparation of TA15 titanium alloy powder by EIGA for laser 3D printing[J]. Materials Reports, 2017, 31(12): 64 − 67,78. doi: 10.11896/j.issn.1005-023X.2017.012.014

    [8] 蔡笑宇, 董博伦, 王俊哲, 等. 热处理对GTA增材制造TiAl合金组织与性能的调控[J]. 焊接学报, 2022, 43(3): 7 − 12.

    Cai Xiaoyu, Dong Bolun, Wang Junzhe, et al. Control of the microstructure and mechanical properties of GTA-based wire arc additive manufactured TiAl alloys using post heat treatment[J]. Transactions of the China Welding Institution, 2022, 43(3): 7 − 12.

    [9] 谢波. EIGA雾化法制备激光3D打印用TC4合金粉末工艺研究[J]. 钢铁钒钛, 2019, 40(3): 7 − 12.

    Xie Bo. Preparation of TC4 alloy powders used for laser 3D printing via EIGA method[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 7 − 12.

    [10] 郭快快, 刘常升, 陈岁元, 等. 功率对EIGA制备3D打印用TC4合金粉末特性的影响[J]. 材料科学与工艺, 2017, 25(1): 16 − 22.

    Guo Kuaikuai, Liu Changsheng, Chen Suiyuan, et al. Effect of EIGA power parameter on the characteristics of TC4 alloy powder for 3D printing[J]. Materials Science & Technology, 2017, 25(1): 16 − 22.

    [11]

    Dutta B, Froes F H. The additive manufacturing (AM) titanium alloys[J]. Metal Powder Report, 2017, 72(2): 96 − 106. doi: 10.1016/j.mprp.2016.12.062

    [12] 付超, 叶义海, 陶涛, 等. EIGA法制备TA17合金粉末的激光增材适应性研究[J]. 材料科学与工艺, 2021, 29(5): 91 − 96. doi: 10.11951/j.issn.1005-0299.20200324

    Fu Chao, Ye Yihai, Tao Tao, et al. Study on laser additive adaptability of TA17 titanium alloy powder prepared by EIGA method[J]. Materials Science & Technology, 2021, 29(5): 91 − 96. doi: 10.11951/j.issn.1005-0299.20200324

    [13] 伍建文, 芦丽莉, 陶涛, 等. 退火热处理对TA17钛合金激光选区熔化成形件的力学性能影响研究[J]. 电焊机, 2021, 51(1): 111 − 114.

    Wu Jianwen, Lu Lili, Tao Tao, et al. Study on the effect of annealing heat treatment on the mechanical properties of selective laser melting of TA17 titanium alloy[J]. Electric Welding Machine, 2021, 51(1): 111 − 114.

    [14]

    Zhuo L, Jing L, Zhu Y, et al. Variant selection in laser melting deposited α + β titanium alloy[J]. Journal of Alloys & Compounds, 2016, 661: 126 − 135.

    [15] 魏子淦, 杨平. TA10钛合金相变过程中的变体选择规律[C]// 第十六届中国体视学与图像分析学术会议——交叉、融合、创新. 海口, 中国, 2019: 058018.

    Wei Zigan, Yang Ping. Variant selection in the phase transformation process of TA10 titanium alloy[C]//The 16th Conference on Stereology and Image Analysis-Intersection, Fusion, and Innovation. Haikou, China, 2019: 058018.

    [16]

    Liu Q, Qiu C. Variant selection of α precipitation in a beta titanium alloy during selective laser melting and its influence on mechanical properties[J]. Materials Science & Engineering: A, 2020, 784: 139336. doi: 10.1016/j.msea.2020.139336

    [17]

    Lei L, Zhao Q Y, Cong W C, et al. Variant selection, coarsening behavior of α phase and associated tensile properties in an α + β titanium alloy[J]. Journal of Materials Science & Technology, 2021, 99: 101 − 113.

    [18] 左玉婷, 王书明, 李聪, 等. 激光增材制造钛合金织构跨尺度分析[J]. 稀有金属材料与工程, 2021, 50(4): 1365 − 1370.

    Zuo Yuting, Wang Shuming, Li Cong, et al. Multi-scale texture analysis of titanium alloy made by laser additive manufacturing[J]. Rare Metal Materials and Engineering, 2021, 50(4): 1365 − 1370.

    [19] 郑国明, 李磊, 毛小南, 等. 钛合金BCC-HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910 − 2917. doi: 10.11896/cldb.18070038

    Zheng Guoming, Li Lei, Mao Xiaonan, et al. Variant selection during titanium alloy BCC-HCP phase transformation and its effect on crystal orientation[J]. Materials Reports, 2019, 33(17): 2910 − 2917. doi: 10.11896/cldb.18070038

    [20]

    Ahmed T, Rack H J. Phase transformations during cooling in α + β titanium alloys[J]. Materials Science & Engineering: A, 1998, 243(1): 206 − 211.

    [21] 谢英杰, 付文杰, 王蕊宁, 等. 热处理对 TA15钛合金中厚板材组织及力学性能的影响[J]. 钛工业进展, 2013(6): 26 − 29.

    Xie Yingjie, Fu Wenjie, Wang Ruining, et al. Effect of heat treatment on microstructure and mechanical properties of TA15 plates[J]. Titanium Industry Progress, 2013(6): 26 − 29.

  • 期刊类型引用(4)

    1. 金玉花,周子正,邢逸初,吴博. 滚动轧制对7050铝合金FSW接头组织的影响. 兰州理工大学学报. 2023(04): 30-34 . 百度学术
    2. 贺地求,刘朋,王海军,王东曜,赖瑞林. 2219-T6静轴肩辅助搅拌摩擦焊组织与性能分析. 湖南大学学报(自然科学版). 2021(08): 11-18 . 百度学术
    3. 徐韬,周灿丰. 一种液压摩擦焊机电液系统研究与试验. 液压气动与密封. 2020(03): 32-35 . 百度学术
    4. 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响. 材料导报. 2020(S2): 1351-1355 . 百度学术

    其他类型引用(3)

图(8)  /  表(3)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  25
  • PDF下载量:  31
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-09-07
  • 网络出版日期:  2023-06-14
  • 刊出日期:  2023-07-30

目录

    /

    返回文章
    返回