Wetting and spreading mechanism of CuSn pre-alloyed powder-cored composite silver solder
-
摘要: 研究了添加质量分数为30% ~ 70% CuSn预合金粉复合银钎料在T2紫铜基体上的润湿铺展过程,并讨论了CuSn预合金粉复合银钎料在紫铜基体上的润湿铺展机理.结果表明,在与紫铜基体的润湿铺展过程中,初始接触角由30%CuSn 的119°降低到70%CuSn 的94°.最终接触角由30%CuSn 的15°下降到70%CuSn 的7°. 当粉芯中CuSn合金粉含量为60%时,钎料在铜板上的润湿面积达到530.04 mm2,相比于未添加CuSn合金粉时提高了约66%.由于低熔点CuSn预合金粉的前驱润湿作用使复合银钎料表面张力降低,初始接触角和最终接触角随着CuSn预合金粉含量的增加而减小. CuSn预合金粉在钎焊过程中先于BAg30CuZnSn钎料外皮熔化,形成熔融的铜锡液态合金薄层,降低了固液界面张力.随后,熔化的BAg30CuZnSn箔带在先期熔化的铜锡液态薄层上铺展,并与其发生溶质原子的扩散反应,最终形成液态复合钎料. 低熔点CuSn预合金粉的加入,使复合银钎料在铜上的润湿性能显著改善. 添加40%CuSn预合金粉复合银钎料与铜基体的反应润湿界面均匀致密,其中白色富Ag相互连接,Sn元素主要分布于富Ag相和周围的锡青铜相中.Abstract: In this paper, the wetting and spreading process of 30% − 70% CuSn pre-alloyed powder composite silver solder on T2 copper matrix was studied, and the wetting and spreading mechanism of CuSn pre-alloyed powder composite silver solder on copper matrix was discussed. The results show that the initial contact angle decreases from 119° for 30% CuSn to 94° for 70% CuSn during the wetting and spreading process with the copper substrate. The final contact angle decreased from 15° for 30% CuSn to 7° for 70% CuSn. When the content of CuSn alloy powder in the powder core is 60%, the wetting area of the solder on the copper plate reaches 530.04 mm2, an increase of about 66% compared to when no CuSn alloy powder was added. The initial and final contact angles decreased with the increase of CuSn pre-alloy powder content due to the precursor wetting effect of the low melting point CuSn pre-alloy powder, which melted on the outer skin of BAg30CuZnSn brazing material during the brazing process, forming a thin layer of molten CuSn liquid alloy and reducing the solid-liquid interfacial tension. Subsequently, the molten BAg30CuZnSn foil strip spreads over the pre-melted CuSn liquid thin layer and reacts with it by diffusion of solute atoms, eventually forming a liquid composite braze. The addition of the low melting point CuSn pre-alloyed powder improves the wetting performance of the composite silver brazing material on copper significantly. The reaction wetting interface of the composite silver braze with the copper substrate is uniform and dense with the addition of 40% CuSn pre-alloyed powder, where the white Ag-rich phases are interconnected and the Sn elements are mainly distributed in the Ag-rich phase and the surrounding tin bronze phase.
-
Keywords:
- silver solder /
- CuSn pre-alloy /
- spreading area /
- interfacial structure /
- wetting mechanism
-
-
图 8 40%CuSn粉芯复合钎料与铜基体润湿界面的元素分布
Figure 8. Element distribution at the interface between composite silver based filler metal with 40% CuSn pre-alloyed powder core and the copper matrix. (a) microstructure of wet interface; (b) distribution of Ag element; (c) distribution of Cu element; (d) distribution of Zn element; (e) distribution of Sn element; (f) distribution of all element
-
[1] 李卓然, 矫宁, 冯吉才, 等. 合金元素对AgCuZn 系钎料合金组织与性能的影响[J]. 焊接学报, 2008, 29(3): 65 − 68. doi: 10.3321/j.issn:0253-360X.2008.03.017 Li Zhuoran, Jiao Ning, Feng Jicai, et al. Effect of alloying elements on microstructure and property of AgCuZnSn brazing alloy[J]. Transactions of the China Welding Institution, 2008, 29(3): 65 − 68. doi: 10.3321/j.issn:0253-360X.2008.03.017
[2] Zou H F, Yang H J, Zhang Z F. Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals[J]. Acta Materialia, 2008, 56(11): 2649 − 2662. doi: 10.1016/j.actamat.2008.01.055
[3] Huang Xiaomeng, Song Wenjie, Qi Yuefeng, et al. Study on high frequency brazing of brass-red copper[J]. China Welding, 2020, 29(2): 60 − 64.
[4] Ma Chaoli, Xue Songbai, Wang Bo. Study on novel Ag-Cu-Zn-Sn brazing filler metal bearing Ga[J]. Journal of Alloys and Compounds, 2016, 688: 854 − 862. doi: 10.1016/j.jallcom.2016.07.255
[5] 张冠星, 钟素娟, 程亚芳, 等. 基于紫铜/黄铜钎焊的新型无银铜磷锡复合钎料[J]. 焊接学报, 2017, 38(12): 33 − 36. doi: 10.12073/j.hjxb.20160226005 Zhang Guanxing, Zhong Sujuan, Cheng Yafang, et al. Compound non-silver copper-phosphorus-tin filler metals used for brazing brass/copper[J]. Transactions of the China Welding Institution, 2017, 38(12): 33 − 36. doi: 10.12073/j.hjxb.20160226005
[6] 彭宇涛, 李佳航, 李子坚, 等. 低银无镉 Ag-Cu-Zn 钎料的合金化改性[J]. 材料热处理学报, 2020, 41(2): 166 − 172. Peng Yutao, Li Jiahang, Li Zijian, et al. Alloying modification of low silver and cadmium-free Ag-Cu-Zn solder[J]. Transactions of Materials and Heat Treatment, 2020, 41(2): 166 − 172.
[7] Long Weimin, Zhang Guanxing, Zhang Qingke. In situ synthesis of high strength Ag brazing filler metals during induction brazing process[J]. Scripta Materialia, 2016, 110: 41 − 43. doi: 10.1016/j.scriptamat.2015.07.041
[8] 龙伟民, 张冠星, 张青科, 等. 钎焊过程原位合成高强度银钎料[J]. 焊接学报, 2015, 36(11): 1 − 4. Long Weimin, Zhang Guanxing, Zhang Qingke, et al. In-situ synthesis of high strength Ag brazing filler metals during brazing process[J]. Transactions of the China Welding Institution, 2015, 36(11): 1 − 4.
[9] 王星星, 彭进, 李帅, 等. 电镀锡银钎料的均匀腐蚀性和抗氧化性分析[J]. 焊接学报, 2017, 38(12): 37 − 40. doi: 10.12073/j.hjxb.20161107001 Wang Xingxing, Peng Jin, Li Shuai, et al. Analysis on corrosion behavior and oxidation resistance of Sn-electroplated silver brazing filler metals[J]. Transactions of the China Welding Institution, 2017, 38(12): 37 − 40. doi: 10.12073/j.hjxb.20161107001
[10] 张俊雄, 薛松柏, 薛鹏, 等. Ga2O3 对CsF-RbF-AlF3钎剂/ZnAl 钎料在铝和钢表面润湿铺展性能的影响[J]. 稀有金属材料与工程, 2017, 46(7): 1900 − 1904. Zhang Junxiong, Xue Songbai, Xue Peng, et al. Effect of Ga2O3 on the wettability and spreading properties of CsF-RbF-AlF3/ZnAl solder on the surface of aluminum and steel[J]. Rare Metal Materials and Engineering, 2017, 46(7): 1900 − 1904.
[11] 浦娟, 薛松柏, 吴铭方, 等. Ga2O3对Ag30CuZnSn药芯银钎料钎缝组织及钎焊接头性能的影响[J]. 焊接学报, 2020, 41(7): 46 − 52. doi: 10.12073/j.hjxb.20200324002 Pu Juan, Xue Songbai, Wu Mingfang, et al. Effect of Ga2O3 on of microstructure and properties of brazed joints obtained by Ag30CuZnSn flux cored brazing filler metal and brass[J]. Transactions of the China Welding Institution, 2020, 41(7): 46 − 52. doi: 10.12073/j.hjxb.20200324002
[12] 王蒙, 张冠星, 钟素娟, 等. 低熔合金粉末对药芯银钎料钎焊过程的影响[J]. 稀有金属材料与工程, 2021, 50(8): 2859 − 2866. Wang Meng, Zhang Guanxing, Zhong Sujuan, et al. Effect of low-melt alloy powder on brazing process of flux-cored silver brazing filler metal[J]. Rare Metal Materials and Engineering, 2021, 50(8): 2859 − 2866.
[13] 王晨充, 黄明浩, 张秋红, 等. Al-Mg合金在2D-石墨纤维织物上的润湿性及铺展动力学分析[J]. 稀有金属材料与工程, 2020, 49(6): 1907 − 1914. Wang Chenchong, Huang Minghao, Zhang Qiuhong, et al. Wettability and spreading dynamics analysis of Al-Mg alloys on 2D-Gr fabrics[J]. Rare Metal Materials and Engineering, 2020, 49(6): 1907 − 1914.
[14] Kozlova O, Voytovych R, Protsenko P, et al. Non-reactive versus dissolutive wetting of Ag-Cu alloys on Cu substrates[J]. Journal of Materials Science, 2010, 45(8): 2099 − 2105. doi: 10.1007/s10853-009-3924-7
[15] 雷敏, 张丽霞, 李宏伟, 等. Zn元素含量对AgCuZn钎料在TiC金属陶瓷表面润湿性的影响[J]. 焊接学报, 2012, 33(7): 41 − 44. Lei Min, Zhang Lixia, Li Hongwei, et al. Influence of Zn content on wettability of TiC cermet by AgCuZn alloy[J]. Transactions of the China Welding Institution, 2012, 33(7): 41 − 44.
[16] Dudiy S V, Lundqvist B I. Wetting of TiC and TiN by metals[J]. Physical Review B, 2004, 69(12): 125421. doi: 10.1103/PhysRevB.69.125421
[17] Mortensen A, Drevet B, Eustathopoulos N. Kinetics of diffusion-limited spreading of sessile drops in reactive wetting[J]. Scripta Materialia, 1997, 36(6): 645 − 651. doi: 10.1016/S1359-6462(96)00431-9
[18] Dezellus O, Hodaj F, Eustathopoulos N. Chemical reaction-limited spreading: the triple line velocity versus contact angle relation[J]. Acta Materialia, 2002, 50(19): 4741 − 4753. doi: 10.1016/S1359-6454(02)00309-9
[19] Saiz E, Tomsia A P. Atomic dynamics and Marangoni films during liquid-metal spreading[J]. Nature Materials, 2004, 3: 903 − 909. doi: 10.1038/nmat1252
[20] Protsenko P, Garandet J P, Voytovych R, et al. Thermodynamics and kinetics of dissolutive wetting of Si by liquid Cu[J]. Acta Materialia, 2010, 58: 6565 − 6574. doi: 10.1016/j.actamat.2010.06.038
-
期刊类型引用(2)
1. 魏世同,孙健,刘景武,陆善平. V含量及回火工艺对高强钢TIG焊熔敷金属组织性能的影响. 焊接学报. 2020(11): 1-6+97 . 本站查看
2. 武凤娟,程丙贵,刘东升,曲锦波. TMCP高强韧F460厚板及焊接接头的组织和性能. 上海金属. 2018(05): 21-27 . 百度学术
其他类型引用(2)