Fatigue crack initiation behavior of additive manufacturing components based on dislocation model
-
摘要: 选区激光熔化的制造过程不可避免地会在构件内部和表面产生缺陷,如何从“合于使用”的角度评价缺陷微观尺度扩展行为对结构寿命周期服役完整性的影响是目前亟需解决的主要问题之一. 为了定量揭示疲劳裂纹萌生行为,借助Tanaka-Mura位错模型描述选区激光熔化成形GH3536合金的疲劳裂纹萌生及短裂纹扩展情况,分析由于缺陷位置、缺陷尺寸和缺陷类型等导致疲劳裂纹的表面和内部萌生的竞争情况. 结果表明,随着缺陷距表面距离的减小或等效缺陷尺寸的增加,疲劳失效模式由表面变为内部失效;选区激光熔化成形GH3536存在对应条件下的损伤容限,当缺陷尺寸较小时,构件的裂纹萌生模式不发生变化,但随着缺陷数量增多,疲劳短裂纹的扩展路径发生多次偏转且萌生寿命明显降低.Abstract: During selective laser melting (SLM) process, defects will be formed inevitably inside and on the surface of the additive manufacturing component. Therefore, it is important to evaluate the impact of crack propagation at the microscale on service integrity of structures throughout their life cycle from the perspective of fitness for service. In order to quantitatively reveal the initiation behavior of fatigue cracks, the Tanaka-Mura dislocation model was used to explain the fatigue crack initiation and short crack propagation of SLM formed GH3536 alloy. The competition mechanism between the surface and internal initiation of fatigue cracks caused by defect location, defect size, and defect type was analyzed. The results indicate that as the distance from the defect to the surface decreases or the equivalent defect size increases, the fatigue failure mode changes from surface failure to internal failure. SLM formed GH3536 exhibits damage tolerance under corresponding conditions: when the defect size is small, the crack initiation mode of the additive manufacturing component remains the same; while with the rising number of defects, the fatigue short crack propagation path deflects several times and the initiation life decreases significantly.
-
-
图 11 不同应力下裂纹萌生扩展路径
Figure 11. Crack initiation and propagation paths under different stresses. (a) preset longitudinal cracks(140 MPa); (b) preset transverse cracks(140 MPa); (c) preset longitudinal cracks with pore(140 MPa); (d) preset longitudinal cracks(160 MPa); (e) preset transverse cracks(160 MPa); (f) preset longitudinal cracks with pore(160 MPa)
表 1 正交各向异性弹性刚度矩阵各分量
Table 1 Components of orthotropic elastic stiffness matrix MPa
C11/C22/C33 C12/C13/C23 C44/C55/C66 285 613 122 405 81 603 表 2 Tanaka-Mura位错模型参数
Table 2 Parameters of Tanaka-Mura dislocation model
临界剪切应力
CRSS /MPa单位面积起裂能
ws /(kJ·m−2)泊松比νA 231 2 0.3 -
[1] Tan C, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials[J]. International Journal of Machine Tools and Manufacture, 2021, 170: 103804. doi: 10.1016/j.ijmachtools.2021.103804
[2] 张宇, 姜云, 胡晓安. 选区激光熔化成形Inconel 625合金的激光焊接头组织及高温蠕变性能[J]. 焊接学报, 2020, 41(5): 78 − 84. Zhang Yu, Jiang Yun, Hu Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. Transactions of the China Welding Institution, 2020, 41(5): 78 − 84.
[3] 张小伟. 金属增材制造技术在航空发动机领域的应用[J]. 航空动力学报, 2016, 31(1): 10 − 16. Zhang Xiaowei. Application of metal additive manufacturing in aero-engine[J]. Journal of Aerospace Power, 2016, 31(1): 10 − 16.
[4] Wang F. Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(5): 545 − 551.
[5] 巴培培, 董志宏, 张炜, 等. 选区激光熔化成形12CrNi2合金钢的显微组织和力学性能[J]. 焊接学报, 2021, 42(8): 8 − 17. doi: 10.12073/j.hjxb.20210323003 Ba Peipei, Dong Zhihong, Zhang Wei, et al. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. Transactions of the China Welding Institution, 2021, 42(8): 8 − 17. doi: 10.12073/j.hjxb.20210323003
[6] Cheng X, Zhao Y, Qian Z, et al. Crack elimination and mechanical properties enhancement in additive manufactured Hastelloy X via in-situ chemical doping of Y2O3[J]. Materials Science & Engineering: A, 2021, 824: 141867. doi: 10.1016/j.msea.2021.141867
[7] 奥妮, 何子昂, 吴圣川, 等. 激光增材制造AlSi10Mg合金的力学性能研究进展[J]. 焊接学报, 2022, 43(9): 1 − 19. Ao Ni, He Ziang, Wu Shengchuan, et al. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. Transactions of the China Welding Institution, 2022, 43(9): 1 − 19.
[8] Tang D, He X, Wu B, et al. The effect of porosity defects on the mid-cycle fatigue behavior of directed energy deposited Ti-6Al-4V[J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103322. doi: 10.1016/j.tafmec.2022.103322
[9] Yan Y, Yuan Z, Kaiji D, et al. The development of 3D printing technology and the current situation of controlling defects in SLM technology[J]. China Welding, 2020, 29(3): 9 − 19.
[10] Nezhadfar P D, Burford E, Anderson-Wedge K, et al. Fatigue crack growth behavior of additively manufactured 17-4 PH stainless steel: Effects of build orientation and microstructure[J]. International Journal of Fatigue, 2019, 123: 168 − 179. doi: 10.1016/j.ijfatigue.2019.02.015
[11] Sterling A J, Torries B, Shamsaei N, et al. Fatigue behavior and failure mechanisms of direct laser deposited Ti-6Al-4V[J]. Materials Science & Engineering: A, 2016, 655: 100 − 112. doi: 10.1016/j.msea.2015.12.026
[12] Walker K F, Liu Q, Brandt M. Evaluation of fatigue crack propagation behaviour in Ti-6Al-4V manufactured by selective laser melting[J]. International Journal of Fatigue, 2017, 104: 302 − 308. doi: 10.1016/j.ijfatigue.2017.07.014
[13] Pineau A, McDowell D L, Busso E P, et al. Failure of metals II: Fatigue[J]. Acta Materialia, 2016, 107: 484 − 507. doi: 10.1016/j.actamat.2015.05.050
[14] Shibanuma K, Ueda K, Ito H, et al. Model for predicting fatigue life and limit of steels based on micromechanics of small crack growth[J]. Materials & Design, 2018, 139: 269 − 282.
[15] 洪友士, 孙成奇, 刘小龙. 合金材料超高周疲劳的机理与模型综述[J]. 力学进展, 2018, 48(1): 1 − 65. Hong Youshi, Sun Chengqi, Liu Xiaolong. A review on mechanisms and models for very-high-cycle fatigue of metallic materials[J]. Advances in Mechanics, 2018, 48(1): 1 − 65.
[16] Mlikota M, Schmauder S, Božić Ž. Calculation of the Wöhler (S-N) curve using a two-scale model[J]. International Journal of Fatigue, 2018, 114: 289 − 297. doi: 10.1016/j.ijfatigue.2018.03.018
[17] Tanaka K, Mura T. A dislocation model for fatigue crack initiation[J]. Journal of Applied Mechanics, 1981, 48(1): 97 − 103. doi: 10.1115/1.3157599
[18] Jezernik N, Kramberger J, Lassen T, et al. Numerical modelling of fatigue crack initiation and growth of martensitic steels[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(11): 714 − 723.
[19] Liu X, Lu S. A micro-crack initiation life simulation method by improving the Tanaka-Mura's model of slip behavior[J]. International Journal of Fatigue, 2021, 145: 106108. doi: 10.1016/j.ijfatigue.2020.106108
[20] Meyer S, Brückner-Foit A, Möslang A. A stochastic simulation model for microcrack initiation in a martensitic steel[J]. Computational Materials Science, 2003, 26: 102 − 110. doi: 10.1016/S0927-0256(02)00409-3
[21] 刘凯, 王荣, 祁海, 等. 选区激光熔化成型 GH3536 合金的显微组织与拉伸性能[J]. 理化检验——物理分册, 2019, 55(1): 15 − 18. Liu Kai, Wang Rong, Qi Hai, et al. Microstructure and tensile properties of GH3536 alloy formed by SLM[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2019, 55(1): 15 − 18.
[22] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564 − 1583. doi: 10.1557/JMR.1992.1564
[23] Rodríguez R, Gutierrez I. Correlation between nanoindentation and tensile properties: influence of the indentation size effect[J]. Materials Science & Engineering: A, 2003, 361(1-2): 377 − 384. doi: 10.1016/S0921-5093(03)00563-X
[24] Zhang B, Li Y, Bai Q. Defect formation mechanisms in selective laser melting: a review[J]. Chinese Journal of Mechanical Engineering, 2017, 30(3): 515 − 527. doi: 10.1007/s10033-017-0121-5
[25] Tanaka K, Mura T. A micromechanical theory of fatigue crack initiation from notches[J]. Mechanics of Materials, 1982, 1(1): 63 − 73. doi: 10.1016/0167-6636(82)90024-2
-
期刊类型引用(2)
1. 张超,周猛兵,崔雷,陶欣,王军,王伟,刘永长. 9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊焊缝组织和冲击性能分析. 焊接学报. 2024(04): 36-42+131 . 本站查看
2. 王猛,张立平,赵琳瑜,吴军,熊然,蒙永胜,李军红. 增材制造和锻造TC11钛合金激光焊接头组织与力学性能. 焊接学报. 2023(10): 102-110+138-139 . 本站查看
其他类型引用(1)