Planning and layout of V-groove welding beads based on parabolic model
-
摘要: 为了提高大型相贯构件机器人焊接的焊道规划准确性,提出了抛物线模型,结合等面积与等高法研究了多层多道焊道排布方法. 首先,规划焊接工艺参数、焊道的横截面、焊接顺序以及焊枪位姿,进一步推导出焊道排布算法的公式,借助MATLAB软件进行多层多道焊道排布的仿真;最后通过机器人焊接试验验证多层多道排布的方法. 结果表明,仿真的焊道排布结果与试验的V形坡口每层每道轮廓相吻合,说明提出的基于抛物线模型的多层多道排布算法是准确可行的. 该研究成果为机器人焊接相贯构件的多层多道焊道排布提供了重要的理论基础.Abstract: In order to improve the accuracy of bead planning for robotic welding of large-scale intersecting components, a multi-layer multi-pass planning method is proposed based on the parabolic model with a method of equal area and equal height. Firstly, process parameters, cross section of weld pass, welding sequence, gun position and posture were planned, and then the algorithm formula was worked out. Secondly, MATLAB software was carried out on the multi-layer multi-pass welding beads layout. Finally, robotic welding experiments were conducted to verify the planning algorithm of welding beads. The results show that the simulated welding beads profile match with the experimental contour of each layer and pass at V-groove. This demonstrates that the proposed multi-layer multi-pass weld planning algorithm based on the parabolic model is feasible and accurate. The research has provided important theoretical basis for the layout of multi-layer multi-pass beads for robotic welding of intersecting components.
-
-
表 1 DH36钢与E501T-1L焊丝的化学成分(质量分数,%)
Table 1 Chemical compositions of DH36 steel and E501T-1L welding wire
材料 C Mn Si S P Ni Al V Ti Nb Fe DH36 0.140 1.510 0.40 0.007 0.015 0.070 0.028 0.057 0.014 0.02 余量 E501T-1L 0.04 1.30 0.35 0.015 0.018 0.45 — — — — 余量 表 2 因素水平表
Table 2 Factors levels
水平 焊接电压U/V 焊接电流I/A 焊接速度v/(cm·min−1) 送丝速度vf /(cm·min−1) 行进角度G/(°) 焊丝伸出长度l/mm 1 24 180 16 300 75 16 2 27 210 19 375 90 19 3 30 240 22 450 105 22 表 3 工艺参数及输出指标
Table 3 Process parameters and output indicators
编号 焊接电压
U/V焊接电流
I/A焊接速度
v/(cm·min−1)送丝速度
vf /(cm·min−1)行进角度
G/(°)焊丝伸出长度
l/mm熔深
D/mm焊道轮廓面积
S/mm21 24 180 16 300 75 16 0. 983 45. 724 2 24 210 19 375 90 19 1. 326 43. 655 3 24 240 22 450 105 22 1. 345 38. 685 4 27 180 16 375 90 22 1. 035 47. 745 5 27 210 19 450 105 16 0. 841 47. 439 6 27 240 22 300 75 19 2. 114 48. 929 7 30 180 19 300 105 19 0. 679 35. 874 8 30 210 22 375 75 22 1. 287 46. 746 9 30 240 16 450 90 16 1. 414 72. 023 10 24 180 22 450 90 19 1. 177 34. 68 11 24 210 16 300 105 22 0. 359 51. 232 12 24 240 19 375 75 16 1. 038 48. 992 13 27 180 19 450 75 22 1. 003 41. 438 14 27 210 22 300 90 16 1. 622 44. 362 15 27 240 16 375 105 19 0. 719 52. 594 16 30 180 22 375 105 16 0. 84 33. 814 17 30 210 16 450 75 19 1. 276 59. 429 18 30 240 19 300 90 22 1.506 59.881 -
[1] 孙志广. 海洋石油工程固定式导管架平台TKY节点的焊接[J]. 焊接, 2017(5): 27 − 31. Sun Zhiguang. Welding of TKY nodes of fixed jacket platform in offshore oil engineering[J]. Welding & Joining, 2017(5): 27 − 31.
[2] 邓彩艳, 宋蒙蒙, 龚宝明, 等. 试样厚度对韧脆转变温度区间的影响[J]. 焊接学报, 2018, 39(5): 1 − 4, 129. eng Caiyan, Song Mengmeng, Gong Baoming, et al. The effects of the sample thickness on the temperature interval of the tough and crispy transformation[J]. Transactions of the China Welding Institution, 2018, 39(5): 1 − 4, 129.
[3] 胡啸, 崔川, 陈纬, 等. 厚板大坡口多层多道焊接轨迹规划算法[J]. 热加工工艺, 2022(15): 102 − 106. Hu Xiao, Cui Chuan, Chen Wei, et al. Trajectory planning algorithm for multi-layer and multi-pass welding of thick plates with large grooves[J]. Hot Working Technology, 2022(15): 102 − 106.
[4] Guo N, Wang M, Guo W, et al. Study on forming mechanism of appearance defects in rotating arc narrow gap horizontal GMAW[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75: 15 − 20. doi: 10.1007/s00170-014-6127-6
[5] 张华军, 张广军, 蔡春波, 等. 厚板弧焊机器人自定义型焊道编排策略[J]. 焊接学报, 2009, 30(3): 61 − 64. Zhang Huajun, Zhang Guangjun, Cai Chunbo, et al. Strategy for custom welding bead arrangement for heavy plate arc welding robot[J]. Transactions of the China Welding Institution, 2009, 30(3): 61 − 64.
[6] 苗新刚, 汪苏, 李晓辉, 等. 大构件相贯线焊接机器人多层多道焊轨迹规划[J]. 材料科学与工艺, 2010, 28(5): 629 − 634. Miao Xingang, Wang Su, Li Xiaohui, et al. Multi-layer and multi-pass welding trajectory planning of intersecting line welding robot for large components[J]. Materials Science and Technology, 2010, 28(5): 629 − 634.
[7] Yang C D, Huang H Y, Zhang H J, et al. Multi-pass route planning for thick plate of low alloy high strength steel by double-sided double arc welding[J]. Advanced Materials Research, 2012, 590: 28 − 34. doi: 10.4028/www.scientific.net/AMR.590.28
[8] Moriyasu M, Hiramoto S, Ohmine M, et al. Development of a multi-pass welding program for arc welding robots and its application to heavy electrical section pieces[J]. Transactions of the Japan Welding Society, 1993, 24: 24 − 29.
[9] 杨光远. 多层多道焊路径自动规划及双机器人协调研究[D]. 哈尔滨: 哈尔滨工业大学, 2008. Yang Guangyuan. Automatic path planning of multi-pass welding and research on double-robotic coordination [D]. Harbin: Harbin Institute of Technology, 2008.
[10] 章锐, 汪选国, 刘伟, 等. 基于自定义填充策略的机器人中厚板多层多道焊离线编程与仿真[J]. 焊接技术, 2019, 48(12): 69 − 73. Zhang Rui, Wang Xuanguo, Liu Wei, et al. Offline programming and simulation of robotic multi-layer multi-pass welding of medium and heavy plates based on custom filling strategy[J]. Welding Technology, 2019, 48(12): 69 − 73.
[11] 廖伟东, 李俊渊, 黄昕, 等. 多层多道焊机器人离线编程路径规划[J]. 机床与液压, 2021, 49(15): 67 − 70. Liao Weidong, Li Junyuan, Huang Xin, et al. Off-line programming path planning for multi-layer multi-pass welding robots[J]. Machine Tool & Hydraulics, 2021, 49(15): 67 − 70.
[12] 刘理想, 柏兴旺, 周祥曼, 等. 电弧增材制造多层单道堆积的焊道轮廓模型函数[J]. 焊接学报, 2020, 41(6): 24 − 29,36. Liu Lixiang, Bai Xingwang, Zhou Xiangman, et al. Weld bead contour model function for multi-layer single pass stacking in arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(6): 24 − 29,36.
[13] Ding D H, Pan Z X, Dominic Cuiuri, et al. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM)[J]. Robotics and Computer-Integrated Manufacturing, 2015, 31: 101 − 110. doi: 10.1016/j.rcim.2014.08.008
[14] 任清川, 徐雷, 何赛松, 等. 方管管端焊接坡口模型及加工工艺精度[J]. 焊接学报, 2013, 34(3): 69 − 72,116. Ren Qingchuan, Xu Lei, He Saisong, et al. Welding groove model and machining process accuracy of square tube end[J]. Transactions of the China Welding Institution, 2013, 34(3): 69 − 72,116.
[15] 杨乘东, 张茂龙, 唐伟宝, 等. 双丝窄间隙埋弧焊焊接接头断裂韧性研究[J]. 发电设备, 2018, 32(1): 38 − 42. doi: 10.3969/j.issn.1671-086X.2018.01.010 Yang Chengdong, Zhang Maolong, Tang Weibao, et al. Research on fracture toughness of double-wire narrow gap submerged arc welding joints[J]. Power Equipment, 2018, 32(1): 38 − 42. doi: 10.3969/j.issn.1671-086X.2018.01.010
[16] 曹林攀, 易际明, 谢传禄, 等. 激光传感的机器人多层多道焊路径规划[J]. 机械设计与制造, 2016(1): 186 − 189. doi: 10.3969/j.issn.1001-3997.2016.01.052 Cao Linpan, Yi Jiming, Xie Chuanlu, et al. Laser-sensing robot multi-layer multi-pass welding path planning[J]. Machinery Design & Manufacture, 2016(1): 186 − 189. doi: 10.3969/j.issn.1001-3997.2016.01.052
[17] 孟羿辰. 弧焊机器人多层焊的路径规划[D]. 南昌: 南昌航空大学, 2012. Meng Yichen. Path planning for multi-layer welding of arc welding robots [D]. Nanchang: Nanchang Hangkong University, 2012.
-
期刊类型引用(12)
1. 牛宗冉,莫文剑,袁志钟,易翠,王致远. 铜磷锡镍粉末钎料的钎焊性能和显微组织. 粉末冶金工业. 2025(01): 31-37 . 百度学术
2. 钟素娟,秦建,王蒙,崔大田,龙伟民. CuSn预合金粉芯复合银钎料的润湿铺展机理. 焊接学报. 2023(02): 16-21+129-130 . 本站查看
3. 郭亚东,陈明亮. 黄铜Type-C接口绿激光焊接工艺研究. 热加工工艺. 2022(09): 148-150 . 百度学术
4. 张冠星,钟素娟,董媛媛,刘晓芳,常云峰,薛行雁. 焊后钎剂残渣腐蚀行为分析. 焊接. 2022(11): 47-53 . 百度学术
5. 王蒙,张冠星,钟素娟,沈元勋,龙伟民,董宏伟,刘晓芳. 低熔合金粉末对药芯银钎料钎焊过程的影响. 稀有金属材料与工程. 2021(08): 2859-2866 . 百度学术
6. 刘捷,黄建林,任刚,黄映杰. 黄铜-钢异种金属激光熔覆技术研究及应用. 江西科学. 2021(06): 1077-1079 . 百度学术
7. 刘晓芳,张冠星,常云峰,王蒙,钟素娟. 干燥过滤器焊后泄露原因. 焊接. 2021(10): 34-37+62-63 . 百度学术
8. 李华晨,周广涛,陈梅峰,刘雪松,崔贺鹏,杨浩. 分步气体介质下低功率激光焊接薄板紫铜成形及组织和性能. 焊接学报. 2020(10): 65-72+101 . 本站查看
9. 王毅. 黄铜与铝合金纳秒激光焊接的工艺研究. 材料保护. 2020(12): 91-94+105 . 百度学术
10. 张敏霞,潘光勇,鲍熠朗. 空调四通阀焊缝泄漏原因分析. 理化检验(物理分册). 2019(12): 859-863 . 百度学术
11. 于奇,潘建军,于新泉,纠永涛,鲍丽. 微量硅元素对铜磷锡粉状钎料性能的影响. 焊接. 2019(10): 17-20+66 . 百度学术
12. 刘文东,李红. 黄铜与不锈钢异种金属激光焊接工艺研究. 应用激光. 2019(06): 966-969 . 百度学术
其他类型引用(1)