高级检索

钛合金/铜-镍/不锈钢焊接接头的组织与性能

常敬欢, 余刚, 曹睿, 闫英杰, 隋然, 席筱蓓

常敬欢, 余刚, 曹睿, 闫英杰, 隋然, 席筱蓓. 钛合金/铜-镍/不锈钢焊接接头的组织与性能[J]. 焊接学报, 2023, 44(7): 48-55. DOI: 10.12073/j.hjxb.20220820002
引用本文: 常敬欢, 余刚, 曹睿, 闫英杰, 隋然, 席筱蓓. 钛合金/铜-镍/不锈钢焊接接头的组织与性能[J]. 焊接学报, 2023, 44(7): 48-55. DOI: 10.12073/j.hjxb.20220820002
CHANG Jinghuan, YU Gang, CAO Rui, YAN Yingjie, SUI Ran, XI Xiaobei. Microstructure and properties of titanium alloy/copper-nickel/stainless steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 48-55. DOI: 10.12073/j.hjxb.20220820002
Citation: CHANG Jinghuan, YU Gang, CAO Rui, YAN Yingjie, SUI Ran, XI Xiaobei. Microstructure and properties of titanium alloy/copper-nickel/stainless steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 48-55. DOI: 10.12073/j.hjxb.20220820002

钛合金/铜-镍/不锈钢焊接接头的组织与性能

基金项目: 国家自然科学基金资助项目(52175325,51961024);甘肃省教育厅青年博士基金资助项目(2022QB-187);甘肃省高校科研资助项目(2021KJ-02);甘肃省教育厅创新基金资助项目(2021B-308);省级大创项目资助项目(S202211807002).
详细信息
    作者简介:

    常敬欢,博士,讲师;主要研究方向为异种金属焊接性和腐蚀性;Email: changjh@lzit.edu.cn

    通讯作者:

    曹睿,博士,教授,博士研究生导师;Email: caorui@lut.edu.cn

  • 中图分类号: TG 442

Microstructure and properties of titanium alloy/copper-nickel/stainless steel welded joints

  • 摘要: 采用铜-镍复合填充金属进行了钛合金和不锈钢的冷金属过渡焊接,借助扫描电子显微镜、X射线衍射仪研究铜-镍复合填充金属对钛合金/不锈钢焊接接头微观组织和力学性能的影响. 结果表明,添加铜-镍复合填充金属后得到了无焊接缺陷的钛合金/不锈钢焊接接头. 接头中形成了硬度相对Ti-Fe,Ti-Cu金属间化合物较低的Ti-Ni金属间化合物,改善了钛合金/不锈钢焊接接头的拉伸性能. 当焊接电流为182 A时,钛合金/不锈钢接头的拉剪强度最大为348 MPa. 钛合金/不锈钢接头由不锈钢-焊缝金属界面、不锈钢-纯镍-钛合金界面、钛合金-焊缝金属界面和焊缝金属组成,接头中形成了Ti-Cu,Ti-Ni,Al-Cu-Ti和Al-Ni-Ti-Fe-Cu金属间化合物.随着焊接电流的增大,钛合金侧界面反应层的显微硬度逐渐增大,且反应层的宽度也逐渐变宽.
    Abstract: Cold metal transfer welding of titanium alloy and stainless steel was carried out using copper-nickel composite filler metal. The effects of copper-nickel composite filler metal on the microstructure and mechanical properties of the joint were investigated by scanning electron microscope and X-ray diffractometer. The results show that defect-free welded joint was obtained, and Ti-Ni intermetallic compound was formed in the joint. As the hardness of the Ti-Ni intermetallic compound is lower than that of the Ti-Fe and Ti-Cu intermetallic compounds, the tensile property of the joint was improved. When the welding current was set at 182 A, the maximum tensile and shear strength of the joint was achieved at 348 MPa. The titanium alloy/stainless steel joint was composed of stainless steel-weld metal interface, stainless steel-pure nickel-titanium alloy interface, titanium alloy-weld metal interface and weld metal, and Ti-Cu, Ti-Ni, Al-Cu-Ti and Al-Ni-Ti-Fe-Cu intermetallic compounds were formed in the joint. With the increase of welding current, there was a gradual growth in the microhardness and the width of the interface reaction layer on the titanium alloy side.
  • 图  1   冷金属过渡焊接示意图(mm)

    Figure  1.   Schematic diagram of CMT welding

    图  2   TC4/Cu-Ni/304接头的横截面形貌

    Figure  2.   Cross section morphology of TC4/Cu-Ni/304 joint

    图  3   TC4/Cu-Ni/304接头不锈钢侧界面的微观组织

    Figure  3.   Microstructure of interface at the stainless steel side of TC4/Cu-Ni/304 joint

    图  4   TC4/Cu-Ni/304接头不锈钢-纯镍-钛合金界面I, II, III, IV区域的微观组织

    Figure  4.   Microstructure of I, II, III, IV region of interface from stainless steel to pure nickel to titanium alloy of TC4/Cu-Ni/304 joint. (a) interface from stainless steel to pure nickel to titanium alloy; (b) I region; (c) II region; (d) III region; (e) IV region

    图  5   TC4/Cu-Ni/304接头钛合金侧界面和焊缝金属的微观组织

    Figure  5.   Microstructure of regions on interface at the titanium alloy side and weld metal of TC4/Cu-Ni/304 joint. (a) interface at the titanium alloy side of TC4/Cu-Ni/304 joint; (b) I region; (c) II region; (d) III region; (e) WM

    图  6   不同焊接电流下TC4/Cu-Ni/304接头的显微硬度分布

    Figure  6.   Microhardness distribution of TC4/Cu-Ni/304 joint with different welding current. (a) region from TC4 to pure nickel interlayer to 304 to WM; (b) region from TC4 to WM

    图  7   不同焊接电流下TC4/Cu-Ni/304接头的拉剪强度

    Figure  7.   Tensile-shear strength of TC4/Cu-Ni/304 joint with different welding current

    图  8   TC4/304接头的断口分析

    Figure  8.   Fracture analysis of TC4/304 joint. (a) fracture surface of TC4/Cu-Ni/304 joint; (b) fracture side of TC4/Cu-Ni/304 joint; (c) fracture surface of TC4/Cu/304 joint; (d) fracture side of TC4/Cu/304 joint

    图  9   TC4/Cu-Ni/304接头的断口表面XRD图谱

    Figure  9.   XRD pattern of fracture surface of TC4/Cu-Ni/304 joint

    表  1   材料的化学成分 (质量分数,%)

    Table  1   Chemical compositions of materials

    材料 Cr Ni Mn Si Fe Al V Ti Cu C N H O Pb Zn
    304 18.0 ~ 20.0 8.0 ~ 12.0 2.0 1.0 余量 ≤0.03
    TC4 0.3 5.5 ~ 6.8 3.5 ~ 4.5 余量 ≤0.5 ≤0.5 ≤0.5 ≤0.5
    ERCuNiAl 6.0 1.0 8.0 余量 ≤0.1 ≤0.1
    下载: 导出CSV

    表  2   CMT焊的工艺参数

    Table  2   Process parameters of CMT welding

    试样
    编号
    送丝速度
    νs /(m·min−1)
    焊接速度
    ν/(mm·s−1)
    焊接电流
    I/A
    1 4.5 8.53 141
    2 5.0 8.53 160
    3 5.5 8.53 171
    4 6.0 8.53 182
    下载: 导出CSV

    表  3   图3和图4中各点的EDS测试结果(原子分数,%)

    Table  3   EDS test results of each point in Fig. 3 − Fig. 4

    测试点 Al Ni Ti Fe Cu Cr 可能的相
    1 17.95 6.82 0.88 7.39 62.72 1.31 铜固溶体和Al3Ti相
    2 13.74 6.61 2.64 51.52 8.04 13.81 Fe-Cr-Al IMCs
    3 2.27 62.15 17.71 11.85 1.66 2.98 Fe固溶体和TiNi3 IMCs
    4 1.29 68.48 24.05 1.28 2.23 0.57 Ni固溶体和TiNi3 IMCs
    5 1.13 71.79 24.22 0.39 0.39 0.27 TiNi3和TiNi IMCs
    6 0.58 70.87 23.89 0.43 1.17 0.31 TiNi3和TiNi IMCs
    7 7.25 44.92 41.48 0.68 1.87 0.61 TiNi和TiNi2 IMCs
    8 15.13 10.88 57.17 2.30 4.97 1.65 Ti-Al-Ni IMCs
    9 6.83 25.18 57.47 3.96 2.74 0.67 Ti固溶体和TiNi2 IMCs
    下载: 导出CSV

    表  4   图5中各点的EDS测试结果(原子分数,%)

    Table  4   EDS test results of each point in Fig. 5

    测试点 Al Ni Ti Fe Cu Cr 可能的相
    10 13.71 2.59 44.59 4.28 29.11 1.30 Ti2Cu和AlTi3 IMCs
    11 22.02 3.84 27.05 1.93 42.83 0.55 AlCuTi和AlCu2Ti IMCs
    12 6.87 2.13 43.58 1.81 38.48 0.95 TiCu和Ti2Cu IMCs
    13 21.35 4.26 23.61 2.35 44.87 0.69 AlCuTi和AlCu2Ti IMCs
    14 27.52 21.29 20.08 17.07 10.45 1.73 Al-Ni-Ti-Fe-Cu IMCs
    15 17.40 3.74 1.61 3.75 68.98 1.40 铜固溶体和Al3Ti相
    16 25.75 25.39 21.11 12.86 11.96 1.83 Al-Ni-Ti-Fe-Cu IMCs
    17 14.83 5.61 1.74 3.54 72.98 1.01 铜固溶体和Al3Ti相
    下载: 导出CSV
  • [1] 常敬欢. 钛/钢冷金属过渡焊接头的连接机理及腐蚀行为研究[D]. 兰州: 兰州理工大学, 2021.

    Chang Jinghuan. Study on joining mechanism and corrosion behavior of titanium/steel cold metal transfer welded joints[D]. Lanzhou: Lanzhou University of Technology, 2021.

    [2]

    Richaud Minier H, Marchebois H, Gerard P. Titanium and super stainless steel welded tubing solutions for sea water cooled heat exchangers[J]. Materials Technology, 2009, 24(3): 191 − 200. doi: 10.1179/106678509X12475883949422

    [3] 张岩, 谷晓燕, 朱丽娟, 等. SUS301L 薄板不锈钢脉冲激光焊接头的组织特点与硬度分布[J]. 材料热处理学报, 2016, 37(S1): 55 − 60.

    Zhang Yan, Gu Xiaoyan, Zhu Lijuan, et al. Microstructure characteristics and hardness distribution of pulsed laser welded SUS301L stainless steel sheet joint[J]. Transactions of Materials and Heat Treatment, 2016, 37(S1): 55 − 60.

    [4]

    Shankar A R, Sole R, Thyagarajan K, et al. Failure analysis of titanium heater tubes and stainless steel heat exchanger weld joints in nitric acid loop[J]. Engineering Failure Analysis, 2019, 99: 248 − 262. doi: 10.1016/j.engfailanal.2019.02.016

    [5] 温炳权, 王宾, 路学成. 金属材料手册[M]. 北京: 电子工业出版社, 2013.

    Wen Bingquan, Wang Bin, Lu Xuecheng. Handbook of metal materials[M]. Beijing: Electronic Industry Press, 2013.

    [6]

    Villars P, Okamoto H. Handbook of ternary alloy phase diagrams[M]. ASM International, Materials Park, OH, USA, 1995.

    [7] 祝要民, 李青, 邱然锋, 等. 钛/钢异种金属焊接的研究现状[J]. 电焊机, 2016, 46(11): 78 − 82.

    Zhu Yaomin, Li Qing, Qiu Ranfeng, et al. Researching status of dissimilar metal welding of titanium and steel[J]. Electric Welding Machine, 2016, 46(11): 78 − 82.

    [8]

    Nizamettin Kahramana, Behcet Gulenc. Joining of titanium/stainless steel by explosive welding and effect on interface[J]. Journal of Materials Processing Technology, 2005, 169(2): 127 − 133. doi: 10.1016/j.jmatprotec.2005.06.045

    [9]

    Velmurugan C, Senthilkumar V, Sarala S, et al. Low temperature diffusion bonding of Ti-6Al-4V and duplex stainless steel[J]. Journal of Materials Processing Technology, 2016, 234: 272 − 279. doi: 10.1016/j.jmatprotec.2016.03.013

    [10]

    Li X, Li J, Liao Z, et al. Microstructure evolution and mechanical properties of rotary friction welded TC4/SUS321 joints at various rotation speeds[J]. Materials & Design, 2016, 99: 26 − 36.

    [11]

    Kundu S, Ghosh M, Laik A, et al. Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer[J]. Materials Science & Engineering: A, 2005, 407(1-2): 154 − 160. doi: 10.1016/j.msea.2005.07.010

    [12]

    Deng Y Q, Sheng G M, Yin L J, et al. Impulse pressuring diffusion bonding of titanium to stainless steel using a copper interlayer[J]. Rare Metal Materials and Engineering, 2015, 44(5): 1041 − 1045. doi: 10.1016/S1875-5372(15)30063-1

    [13]

    Kundu S, Sam S, Chatterjee S. Interfacial reactions and strength properties in dissimilar titanium alloy/Ni alloy/microduplex stainless steel diffusion bonded joints[J]. Materials Science & Engineering: A, 2013, 560: 288 − 295. doi: 10.1016/j.msea.2012.09.069

    [14]

    Song T F, Jiang X S, Shao Z Y, et al. Microstructure and mechanical properties of vacuum diffusion bonded joints between Ti-6Al-4V titanium alloy and AISI316L stainless steel using Cu/Nb multi-interlayer[J]. Vacuum, 2017, 145: 68 − 76. doi: 10.1016/j.vacuum.2017.08.017

    [15] 毕志雄, 李雪交, 吴勇, 等. 钛箔/钢爆炸焊接的界面结合性能[J]. 焊接学报, 2022, 43(4): 81 − 85.

    Bi Zhixiong, Li Xuejiao, Wu Yong, et al. Interfacial bonding properties of titanium foil/steel explosive welding[J]. Transactions of the China Welding Institution, 2022, 43(4): 81 − 85.

    [16]

    Vigraman T, Ravindran D, Narayanasamy R. Effect of phase transformation and intermetallic compounds on the microstructure and tensile strength properties of diffusion-bonded joints between Ti-6Al-4V and AISI 304L[J]. Materials & Design, 2012, 36: 714 − 727.

    [17]

    Li S, Chen Y, Zhou X, et al. High-strength titanium alloy/steel butt joint produced via friction stir welding[J]. Materials Letters, 2019, 234: 155 − 158. doi: 10.1016/j.matlet.2018.09.094

    [18]

    Wang T, Zhang B, Wang H, et al. Microstructures and mechanical properties of electron beam-welded titanium-steel joints with vanadium, nickel, copper and silver filler metals[J]. Journal of Materials Engineering and Performance, 2014, 23(4): 1498 − 1504. doi: 10.1007/s11665-014-0897-8

    [19]

    Hao X, Dong H, Xia Y, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100-xCux high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2019, 803: 649 − 657. doi: 10.1016/j.jallcom.2019.06.225

    [20]

    Zhang Y, Chen Y, Zhou J, et al. Experimental and numerical study on microstructure and mechanical properties for laser welding-brazing of TC4 titanium alloy and 304 stainless steel with Cu-base filler metal[J]. Journal of Materials Research and Technology, 2020, 9(1): 465 − 477. doi: 10.1016/j.jmrt.2019.10.075

    [21] 牛小男, 崔丽, 王鹏, 等. 镍铝青铜过渡层对钛合金/不锈钢异种材料激光焊接头组织与力学性能的影响[J]. 焊接学报, 2022, 43(1): 42 − 47.

    Niu Xiaonan, Cui Li, Wang Peng, et al. Effect of nickel aluminum bronze transition layer on microstructure and mechanical properties of laser welded titanium alloy/stainless steel joint[J]. Transactions of the China Welding Institution, 2022, 43(1): 42 − 47.

    [22]

    Li W, Chang J H, Wen B F, et al. Joining of dissimilar metals between magnesium AZ31B and aluminum A6061-T6 using galvanized steel as a transition joining layer[J]. Journal of Iron and Steel Research International, 2022, 29(4): 677 − 686. doi: 10.1007/s42243-021-00589-z

    [23]

    Cao R, Chang J H, Huang Q, et al. Behaviors and effects of Zn coating on welding-brazing process of Al-steel and Mg-steel dissimilar metals[J]. Journal of Manufacturing Processes, 2018, 31: 674 − 688. doi: 10.1016/j.jmapro.2018.01.001

    [24] 黄倩, 曹睿, 朱海霞, 等. 铝/裸钢板冷金属过渡点塞焊接头组织及力学性能[J]. 焊接学报, 2014, 35(11): 59 − 62.

    Huang Qian, Cao Rui, Zhu Haixia, et al. Process and performance of cold metal transfer spot plug welding between aluminum alloy and bare steel[J]. Transactions of the China Welding Institution, 2014, 35(11): 59 − 62.

    [25]

    Zhang B G, Wang T, Chen G Q, et al. Contact reactive joining of TA15 and 304 stainless steel via a copper interlayer heated by electron beam with a beam deflection[J]. Journal of Materials Engineering and Performance, 2012, 21(10): 2067 − 2073. doi: 10.1007/s11665-012-0132-4

    [26] 李标峰. 钛与钢及钛复合钢板的焊接性研究(Ⅱ)[J]. 材料开发与应用, 2004, 19(2): 45 − 46. doi: 10.19515/j.cnki.1003-1545.2004.02.013

    Li Biaofeng. Study on the weldability of titanium and steel and titanium clad steel plate(Ⅱ)[J]. Development and Application of Materials, 2004, 19(2): 45 − 46. doi: 10.19515/j.cnki.1003-1545.2004.02.013

    [27] 常敬欢, 曹睿, 闫英杰. 钛合金/不锈钢冷金属过渡焊接头组织及性能[J]. 焊接学报, 2021, 42(6): 44 − 51.

    Chang Jinghuan, Cao Rui, Yan Yingjie. Microstructure and properties of titanium alloy/stainless steel joint by cold metal transfer joining technology[J]. Transactions of the China Welding Institution, 2021, 42(6): 44 − 51.

  • 期刊类型引用(1)

    1. 朱明,祁先刚,张宗智,石玗. 采用激光预置铜层钛钢接头成形与组织. 焊接学报. 2025(03): 18-26+88 . 本站查看

    其他类型引用(0)

图(9)  /  表(4)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  37
  • PDF下载量:  46
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-08-19
  • 网络出版日期:  2023-06-18
  • 刊出日期:  2023-07-30

目录

    /

    返回文章
    返回