高级检索

钛合金/铜-镍/不锈钢焊接接头的组织与性能

常敬欢, 余刚, 曹睿, 闫英杰, 隋然, 席筱蓓

常敬欢, 余刚, 曹睿, 闫英杰, 隋然, 席筱蓓. 钛合金/铜-镍/不锈钢焊接接头的组织与性能[J]. 焊接学报, 2023, 44(7): 48-55. DOI: 10.12073/j.hjxb.20220820002
引用本文: 常敬欢, 余刚, 曹睿, 闫英杰, 隋然, 席筱蓓. 钛合金/铜-镍/不锈钢焊接接头的组织与性能[J]. 焊接学报, 2023, 44(7): 48-55. DOI: 10.12073/j.hjxb.20220820002
CHANG Jinghuan, YU Gang, CAO Rui, YAN Yingjie, SUI Ran, XI Xiaobei. Microstructure and properties of titanium alloy/copper-nickel/stainless steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 48-55. DOI: 10.12073/j.hjxb.20220820002
Citation: CHANG Jinghuan, YU Gang, CAO Rui, YAN Yingjie, SUI Ran, XI Xiaobei. Microstructure and properties of titanium alloy/copper-nickel/stainless steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 48-55. DOI: 10.12073/j.hjxb.20220820002

钛合金/铜-镍/不锈钢焊接接头的组织与性能

基金项目: 国家自然科学基金资助项目(52175325,51961024);甘肃省教育厅青年博士基金资助项目(2022QB-187);甘肃省高校科研资助项目(2021KJ-02);甘肃省教育厅创新基金资助项目(2021B-308);省级大创项目资助项目(S202211807002).
详细信息
    作者简介:

    常敬欢,博士,讲师;主要研究方向为异种金属焊接性和腐蚀性;Email: changjh@lzit.edu.cn

    通讯作者:

    曹睿,博士,教授,博士研究生导师;Email: caorui@lut.edu.cn

  • 中图分类号: TG 442

Microstructure and properties of titanium alloy/copper-nickel/stainless steel welded joints

  • 摘要: 采用铜-镍复合填充金属进行了钛合金和不锈钢的冷金属过渡焊接,借助扫描电子显微镜、X射线衍射仪研究铜-镍复合填充金属对钛合金/不锈钢焊接接头微观组织和力学性能的影响. 结果表明,添加铜-镍复合填充金属后得到了无焊接缺陷的钛合金/不锈钢焊接接头. 接头中形成了硬度相对Ti-Fe,Ti-Cu金属间化合物较低的Ti-Ni金属间化合物,改善了钛合金/不锈钢焊接接头的拉伸性能. 当焊接电流为182 A时,钛合金/不锈钢接头的拉剪强度最大为348 MPa. 钛合金/不锈钢接头由不锈钢-焊缝金属界面、不锈钢-纯镍-钛合金界面、钛合金-焊缝金属界面和焊缝金属组成,接头中形成了Ti-Cu,Ti-Ni,Al-Cu-Ti和Al-Ni-Ti-Fe-Cu金属间化合物.随着焊接电流的增大,钛合金侧界面反应层的显微硬度逐渐增大,且反应层的宽度也逐渐变宽.
    Abstract: Cold metal transfer welding of titanium alloy and stainless steel was carried out using copper-nickel composite filler metal. The effects of copper-nickel composite filler metal on the microstructure and mechanical properties of the joint were investigated by scanning electron microscope and X-ray diffractometer. The results show that defect-free welded joint was obtained, and Ti-Ni intermetallic compound was formed in the joint. As the hardness of the Ti-Ni intermetallic compound is lower than that of the Ti-Fe and Ti-Cu intermetallic compounds, the tensile property of the joint was improved. When the welding current was set at 182 A, the maximum tensile and shear strength of the joint was achieved at 348 MPa. The titanium alloy/stainless steel joint was composed of stainless steel-weld metal interface, stainless steel-pure nickel-titanium alloy interface, titanium alloy-weld metal interface and weld metal, and Ti-Cu, Ti-Ni, Al-Cu-Ti and Al-Ni-Ti-Fe-Cu intermetallic compounds were formed in the joint. With the increase of welding current, there was a gradual growth in the microhardness and the width of the interface reaction layer on the titanium alloy side.
  • 缆式焊丝(cable-type welding wire)是由多根实心或者药芯焊丝旋转绞合而成,类似于麻花辫的新型焊接材料,具有焊接效率高、热输入低、设备可达性好等优点[1]. 研究人员基于缆式焊丝的电弧特性进行了深入分析,发现其电弧会受到焊丝绞合力释放和电磁收缩力的作用从而发生旋转,能够起到搅拌熔池、细化晶粒、促进气体逸出的作用[2-4]. 方臣富等人[5-6]对缆式焊丝的电弧旋转特性、熔池流动行为、熔滴过渡行为等方面进行了深入研究,建立电弧旋转频率的匹配模型;Chen等人[7-8]发现因缆式焊丝电弧旋转作用导致熔滴过渡时存在非轴向迁移,使缆式焊丝在电气焊中出现侧壁熔深增加的现象;Wang等人[9]首次采用缆式焊丝基于冷金属转移技术制造薄壁AA5356铝合金,形成了具有等轴晶的无缺陷镀层;Li等人[10]发现缆式焊丝焊接高氮奥氏体不锈钢时,具有较高的稳定性,焊接接头由柱状奥氏体和枝状铁素体组成,有效提高接头的力学性能,因此,缆式焊丝在GMAW中具有广阔的应用前景,尤其是利用其高效的熔敷特性进行中厚板打底和填充焊接,能够大幅度提高其焊接效率,但是在工艺试验中发现缆式焊丝GMAW焊缝出现截面侧偏现象,导致对接焊时容易出现不完全熔透,侧面熔合不良,从而弱化焊接接头的承载能力,增加焊接接头断裂风险.

    文中从缆式焊丝GMAW电弧动态行为入手,利用Rocke TECH高速摄像系统和Image-Pro软件分析焊缝截面侧偏的变化趋势以及影响因素,探索其行为机理,对于缆式焊丝的工程化应用具有重要意义.

    为了保证试验的稳定性和可重复性,采用KukaKR16型智能弧焊机器人系统,配备Fronius TPS5000焊接系统、高速摄像系统和数据采集系统等搭建试验平台. 为了增加执行机构的运动范围,配备依靠伺服电机驱动具有移动滑轨的外部轴、变位机等辅助焊接设备,高速摄像采集系统[11]的帧率设定为6 000帧/s,实时采集不同电流下缆式焊丝GMAW中电弧的变化数据,高速摄像机从电弧后方拍摄焊接过程中电弧的动态行为,激光光源在摄像机上方直接照射电弧,压制弧光亮度,确保能够识别出电弧形貌,试验条件和构成如图1所示.

    图  1  试验条件示意图
    Figure  1.  Schematic diagram of experimental conditions

    试验母材为低碳钢,尺寸为300 mm × 50 mm × 16 mm,焊前清除试板表面的铁锈、油污和水渍等杂质. 焊材为直径2.4 mm的缆式焊丝,缆式焊丝由7根直径为0.8 mm的AWS ER70S-6实心焊丝旋转绞合而成,焊丝结构如图2所示,试验母材和焊丝的化学成分见表1. 焊后垂直于焊接方向截取焊缝截面,使用磨床和砂纸进行研磨,经抛光机抛光后采用4%的硝酸酒精溶液进行截面腐蚀,通过宏观金相测量焊缝截面侧偏数据.

    图  2  缆式焊丝示意图[8]
    Figure  2.  Schematic of the CWW. (a) CWW structure diagram; (b) CWW section diagram; (c) CWW physical drawing

    经过大量的工艺试验和焊缝截面数据测量发现,焊接电流的大小是影响焊缝截面侧偏的关键因素,当缆式焊丝GMAW中焊接电流低于300 A时为短路过渡,焊缝余高较高,焊缝呈细长条状,容易在焊道两侧产生应力集中;当焊接电流超过480 A时发生亚旋转射流过渡,熔滴混乱的绞合在焊丝端部,导致飞溅增加,焊缝成形变差;当焊接电流在380 ~ 430 A时获得稳定的喷射过渡,焊缝成形较好,因此在良好焊缝成形的基础上,进行分析焊缝截面侧偏行为对于缆式焊丝工程化应用具有重要意义,选用的焊接工艺参数见表2.

    表  1  母材和焊丝的主要化学成分(质量分数,%)
    Table  1.  Chemical composition of base metal and welding wire
    材料CMnSiPSCuCrNi
    Q2350.181.600.550.0350.0350.35≤0.2≤0.4
    AWS ER70S-60.0721.490.820.0150.0080.24
    下载: 导出CSV 
    | 显示表格
    表  2  焊接工艺参数
    Table  2.  Welding process parameters
    送丝速度vs /(m∙min−1)焊接电流I/A电弧电压U/V焊接速度v/(m∙min−1)保护气流量Q/(L∙min−1)保护气类型
    3.8 ~ 4.8380 ~ 430290.520 ~ 2580%Ar + 20%CO2
    下载: 导出CSV 
    | 显示表格

    基于单一变量法研究不同电流与焊缝截面形貌特征尺寸之间的关系,从图3中可以看出焊缝截面存在一定程度的向右侧的侧偏趋势. 采用Image-Pro软件进行焊缝截面侧偏尺寸测量,发现缆式焊丝GMAW焊缝截面形貌与实心焊丝相比有明显不同,其焊缝截面形貌并不是完全居中,而是存在向轴线右侧侧偏的趋势,这种偏移的趋势会随着电流的增加而不断减弱,焊缝截面侧偏尺寸与焊接电流之间的关系如图4所示.

    图  3  不同电流焊缝截面侧偏现象
    Figure  3.  Morphology of weld section under different currents. (a) 380 A; (b) 390 A; (c) 400 A; (d) 410 A; (e) 420 A; (f) 430 A
    图  4  焊缝截面侧偏变化
    Figure  4.  Change of side deviation

    基于高速摄像系统对上述现象进行分析,发现由于缆式焊丝是采用多焊丝旋转绞合而成,外围分焊丝与中心分焊丝具有一定的螺旋升角,在焊接过程中,随着送丝机的不断送进,焊丝绞制过程中的机械旋转力会沿着逆绞合方向释放,随着焊丝的不断熔化形成持续的旋转电弧,在电弧旋转力的作用下促进熔滴过渡[12],旋转电弧中熔滴受力模型如图5所示,但是图5(a)的高速摄像图片中熔滴并未按照焊丝轴线进行过渡,而是与轴线形成一定的角度直接撞击到熔池中,熔滴在电弧空间高速运动产生的冲击力与熔池金属运动和焊缝成形紧密相关,在熔滴冲击力的作用下,引起缆式焊丝焊缝的熔深形貌向右侧倾斜,引起了焊缝截面的侧偏现象. 通过建立图5(b)中的旋转电弧中熔滴受力模型,分析缆式焊丝GMAW焊缝截面侧偏行为的根本原因.

    图  5  旋转电弧中熔滴受力模型
    Figure  5.  Droplet stress model in rotating arc. (a) high speed camera image; (b) theoretical model

    熔滴受力不均是导致缆式焊丝GMAW中的熔滴没有沿着焊丝轴线过渡的根本原因,选用7股直径ϕ2.4 mm的缆式焊丝绞合方向为逆时针旋转,依据高速摄像图片和理论分析可以确定其在焊接过程中,由于绞合力的释放导致电弧旋转方向为顺时针,因此在旋转电弧的作用下会产生离心力F1,离心力与旋转电弧相切,均匀的作用在熔滴上,如图6所示.

    图  6  基于旋转电弧的液滴受力分析模型
    Figure  6.  Force analysis model of droplet based on rotating arc
    $$ {F_1} = \frac{{4{\text{π} ^2}r}}{{{T^2}}} \cdot m $$ (1)

    式中:F1为缆式焊丝电弧旋转时所受的离心力(N);r为电弧旋转半径(mm);m为物体的质量(g);T为旋转的周期(s). 此外,在焊接前进方向上存在由空气产生的阻力,阻力的方向与焊丝前进方向相反.

    $$ {F_2} = \frac{1}{2} \cdot C \cdot \rho \cdot S \cdot {V^2} $$ (2)

    式中:F2为由空气产生的阻力(N);C为空气阻力系数;$ \rho $为空气密度(g/mL); S为电弧垂直焊道方向的截面积(mm2);v为焊接速度(mm/s). F1F2二者共同作用到熔滴上,产生的合力F3图7所示,可以看出沿着前进方向的左右两侧受力明显不同,熔滴左侧受到的合力为F3,右侧受到的合力为$ F_3^{'} $,左侧的合力F3是离心力F1和阻力F2的差,右侧的合力$ F_3^{'} $是离心力F1和阻力F2的和,因此可以得出$ F_3^{'} $> F3 .

    图  7  不同电流条件的电弧偏移
    Figure  7.  Arc excursion at different currents. (a) arc excursion at 380 A; (b) arc excursion at 400 A; (c) arc excursion at 420 A
    $$ {F_3} = \frac{{4{\text{π} ^2}r}}{{{T^2}}} \cdot m - \frac{1}{2} \cdot C \cdot \rho \cdot S \cdot {V^2} $$ (3)
    $$ {F_{3'}} = \frac{{4{\text{π} ^2}r}}{{{T^2}}} \cdot m + \frac{1}{2} \cdot C \cdot \rho \cdot S \cdot {V^2} $$ (4)

    综上所述,通过建立基于旋转电弧的液滴受力分析模型可知,缆式焊丝GMAW焊缝截面侧偏的本质原因是由于焊丝独特的绞合结构,导致熔滴两侧出现受力不均匀的情况,使熔滴过渡方向出现向受力较大的右侧倾斜,在熔滴冲击力的作用下,导致焊缝截面出现侧偏现象.

    焊缝截面侧偏的尺寸与焊接电流的大小密切相关,当焊接电流较小时,由于缆式焊丝独特的绞合结构,阳极斑点无法持续在中心丝上稳定存在,而是会基于最小电压原理随机出现在某根分焊丝上,当某根分焊丝距离母材最近时,电弧便会在这根焊丝端部优先起弧燃烧,在电弧热量的作用下焊丝熔化,导致其距离母材的尺寸增加,因此会在另一个距离母材最近的焊丝端部重新起弧. 综上所述,在电弧燃烧过程中每根分焊丝会出现交替起弧的现象,起弧的分焊丝端部等离子体密度增加,导致燃弧侧能量偏高,弧柱区的电流不断流入阳极斑点内,导致阳极斑点电流密度进一步增加,使该侧的金属蒸气和保护气氛的电离程度要高于其他区域,阳极斑点区域的金属蒸气和保护气含量相比于其他区域而言就会降低,在电弧空间中压力差的作用下导致电弧向阳极斑点侧偏移,从图7中可以看出,电弧每隔0.5 ms就会发生随机偏置,因此电弧会随着阳极斑点的跳动从而发生偏移,相同过程实时发生在每一瞬间,从宏观上看,其电弧在整个焊接过程中表现为呈圆周状不规则跳动的特点. 如图8所示,当电流为380 A时,2 ms内电弧的直径为8.02 mm,此时电弧直径较大,电弧能量密度较低,因此其电弧力较小,对于液态熔滴沿焊丝轴线方向过渡的束缚力较小,因此在电弧旋转力和空气阻力的作用下,熔滴在焊丝径向受到的合力大于焊丝在轴向的合力,从而使得熔滴下落的轨迹偏离焊丝轴线方向,与焊丝轴线方向产生一定的角度,其示意图如图5(b)所示. 随着焊接电流的增加,由于熔化极气体保护焊的恒压特性,为了稳定电压而增加送丝速度,导致单位时间内阳极斑点的跳动频率增加,电弧自身的电磁强度和拘束力增加,导致电弧的挺直性增加,在相同采集帧数下,当电流为420 A时,2 ms内的电弧直径为6.21 mm,电弧能量密度提高,对液态熔滴的拘束增强,使熔滴更容易沿着焊丝轴向过渡,导致焊缝的截面形貌逐渐趋于轴向对称.

    图  8  不同电流下2 ms内电弧直径的变化
    Figure  8.  Change of arc diameter under different current of 2 ms

    (1)基于缆式焊丝旋转电弧受力建立分析模型描述侧偏现象,发现电弧旋转特性引起熔滴受力不均,熔滴进入熔池的角度与焊丝轴线存在一定的角度差,在熔滴冲击力的作用下导致焊缝截面发生侧偏.

    (2)焊接电流是影响缆式焊丝GMAW焊缝截面侧偏的关键因素,随着电流的增加,截面侧偏的趋势减弱.由于缆式焊丝交替起弧特性导致阳极斑点不规则移动,在电弧空间压力差的作用下导致电弧周期性偏置引起电弧密度降低,因此在小电流时焊缝截面侧偏更加明显,随着焊接电流的增大,电弧对熔滴的拘束增强,使熔滴更容易沿着焊丝轴向过渡,从而使焊缝的熔深截面形貌逐渐趋于轴线对称.

  • 图  1   冷金属过渡焊接示意图(mm)

    Figure  1.   Schematic diagram of CMT welding

    图  2   TC4/Cu-Ni/304接头的横截面形貌

    Figure  2.   Cross section morphology of TC4/Cu-Ni/304 joint

    图  3   TC4/Cu-Ni/304接头不锈钢侧界面的微观组织

    Figure  3.   Microstructure of interface at the stainless steel side of TC4/Cu-Ni/304 joint

    图  4   TC4/Cu-Ni/304接头不锈钢-纯镍-钛合金界面I, II, III, IV区域的微观组织

    Figure  4.   Microstructure of I, II, III, IV region of interface from stainless steel to pure nickel to titanium alloy of TC4/Cu-Ni/304 joint. (a) interface from stainless steel to pure nickel to titanium alloy; (b) I region; (c) II region; (d) III region; (e) IV region

    图  5   TC4/Cu-Ni/304接头钛合金侧界面和焊缝金属的微观组织

    Figure  5.   Microstructure of regions on interface at the titanium alloy side and weld metal of TC4/Cu-Ni/304 joint. (a) interface at the titanium alloy side of TC4/Cu-Ni/304 joint; (b) I region; (c) II region; (d) III region; (e) WM

    图  6   不同焊接电流下TC4/Cu-Ni/304接头的显微硬度分布

    Figure  6.   Microhardness distribution of TC4/Cu-Ni/304 joint with different welding current. (a) region from TC4 to pure nickel interlayer to 304 to WM; (b) region from TC4 to WM

    图  7   不同焊接电流下TC4/Cu-Ni/304接头的拉剪强度

    Figure  7.   Tensile-shear strength of TC4/Cu-Ni/304 joint with different welding current

    图  8   TC4/304接头的断口分析

    Figure  8.   Fracture analysis of TC4/304 joint. (a) fracture surface of TC4/Cu-Ni/304 joint; (b) fracture side of TC4/Cu-Ni/304 joint; (c) fracture surface of TC4/Cu/304 joint; (d) fracture side of TC4/Cu/304 joint

    图  9   TC4/Cu-Ni/304接头的断口表面XRD图谱

    Figure  9.   XRD pattern of fracture surface of TC4/Cu-Ni/304 joint

    表  1   材料的化学成分 (质量分数,%)

    Table  1   Chemical compositions of materials

    材料 Cr Ni Mn Si Fe Al V Ti Cu C N H O Pb Zn
    304 18.0 ~ 20.0 8.0 ~ 12.0 2.0 1.0 余量 ≤0.03
    TC4 0.3 5.5 ~ 6.8 3.5 ~ 4.5 余量 ≤0.5 ≤0.5 ≤0.5 ≤0.5
    ERCuNiAl 6.0 1.0 8.0 余量 ≤0.1 ≤0.1
    下载: 导出CSV

    表  2   CMT焊的工艺参数

    Table  2   Process parameters of CMT welding

    试样
    编号
    送丝速度
    νs /(m·min−1)
    焊接速度
    ν/(mm·s−1)
    焊接电流
    I/A
    1 4.5 8.53 141
    2 5.0 8.53 160
    3 5.5 8.53 171
    4 6.0 8.53 182
    下载: 导出CSV

    表  3   图3和图4中各点的EDS测试结果(原子分数,%)

    Table  3   EDS test results of each point in Fig. 3 − Fig. 4

    测试点 Al Ni Ti Fe Cu Cr 可能的相
    1 17.95 6.82 0.88 7.39 62.72 1.31 铜固溶体和Al3Ti相
    2 13.74 6.61 2.64 51.52 8.04 13.81 Fe-Cr-Al IMCs
    3 2.27 62.15 17.71 11.85 1.66 2.98 Fe固溶体和TiNi3 IMCs
    4 1.29 68.48 24.05 1.28 2.23 0.57 Ni固溶体和TiNi3 IMCs
    5 1.13 71.79 24.22 0.39 0.39 0.27 TiNi3和TiNi IMCs
    6 0.58 70.87 23.89 0.43 1.17 0.31 TiNi3和TiNi IMCs
    7 7.25 44.92 41.48 0.68 1.87 0.61 TiNi和TiNi2 IMCs
    8 15.13 10.88 57.17 2.30 4.97 1.65 Ti-Al-Ni IMCs
    9 6.83 25.18 57.47 3.96 2.74 0.67 Ti固溶体和TiNi2 IMCs
    下载: 导出CSV

    表  4   图5中各点的EDS测试结果(原子分数,%)

    Table  4   EDS test results of each point in Fig. 5

    测试点 Al Ni Ti Fe Cu Cr 可能的相
    10 13.71 2.59 44.59 4.28 29.11 1.30 Ti2Cu和AlTi3 IMCs
    11 22.02 3.84 27.05 1.93 42.83 0.55 AlCuTi和AlCu2Ti IMCs
    12 6.87 2.13 43.58 1.81 38.48 0.95 TiCu和Ti2Cu IMCs
    13 21.35 4.26 23.61 2.35 44.87 0.69 AlCuTi和AlCu2Ti IMCs
    14 27.52 21.29 20.08 17.07 10.45 1.73 Al-Ni-Ti-Fe-Cu IMCs
    15 17.40 3.74 1.61 3.75 68.98 1.40 铜固溶体和Al3Ti相
    16 25.75 25.39 21.11 12.86 11.96 1.83 Al-Ni-Ti-Fe-Cu IMCs
    17 14.83 5.61 1.74 3.54 72.98 1.01 铜固溶体和Al3Ti相
    下载: 导出CSV
  • [1] 常敬欢. 钛/钢冷金属过渡焊接头的连接机理及腐蚀行为研究[D]. 兰州: 兰州理工大学, 2021.

    Chang Jinghuan. Study on joining mechanism and corrosion behavior of titanium/steel cold metal transfer welded joints[D]. Lanzhou: Lanzhou University of Technology, 2021.

    [2]

    Richaud Minier H, Marchebois H, Gerard P. Titanium and super stainless steel welded tubing solutions for sea water cooled heat exchangers[J]. Materials Technology, 2009, 24(3): 191 − 200. doi: 10.1179/106678509X12475883949422

    [3] 张岩, 谷晓燕, 朱丽娟, 等. SUS301L 薄板不锈钢脉冲激光焊接头的组织特点与硬度分布[J]. 材料热处理学报, 2016, 37(S1): 55 − 60.

    Zhang Yan, Gu Xiaoyan, Zhu Lijuan, et al. Microstructure characteristics and hardness distribution of pulsed laser welded SUS301L stainless steel sheet joint[J]. Transactions of Materials and Heat Treatment, 2016, 37(S1): 55 − 60.

    [4]

    Shankar A R, Sole R, Thyagarajan K, et al. Failure analysis of titanium heater tubes and stainless steel heat exchanger weld joints in nitric acid loop[J]. Engineering Failure Analysis, 2019, 99: 248 − 262. doi: 10.1016/j.engfailanal.2019.02.016

    [5] 温炳权, 王宾, 路学成. 金属材料手册[M]. 北京: 电子工业出版社, 2013.

    Wen Bingquan, Wang Bin, Lu Xuecheng. Handbook of metal materials[M]. Beijing: Electronic Industry Press, 2013.

    [6]

    Villars P, Okamoto H. Handbook of ternary alloy phase diagrams[M]. ASM International, Materials Park, OH, USA, 1995.

    [7] 祝要民, 李青, 邱然锋, 等. 钛/钢异种金属焊接的研究现状[J]. 电焊机, 2016, 46(11): 78 − 82.

    Zhu Yaomin, Li Qing, Qiu Ranfeng, et al. Researching status of dissimilar metal welding of titanium and steel[J]. Electric Welding Machine, 2016, 46(11): 78 − 82.

    [8]

    Nizamettin Kahramana, Behcet Gulenc. Joining of titanium/stainless steel by explosive welding and effect on interface[J]. Journal of Materials Processing Technology, 2005, 169(2): 127 − 133. doi: 10.1016/j.jmatprotec.2005.06.045

    [9]

    Velmurugan C, Senthilkumar V, Sarala S, et al. Low temperature diffusion bonding of Ti-6Al-4V and duplex stainless steel[J]. Journal of Materials Processing Technology, 2016, 234: 272 − 279. doi: 10.1016/j.jmatprotec.2016.03.013

    [10]

    Li X, Li J, Liao Z, et al. Microstructure evolution and mechanical properties of rotary friction welded TC4/SUS321 joints at various rotation speeds[J]. Materials & Design, 2016, 99: 26 − 36.

    [11]

    Kundu S, Ghosh M, Laik A, et al. Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer[J]. Materials Science & Engineering: A, 2005, 407(1-2): 154 − 160. doi: 10.1016/j.msea.2005.07.010

    [12]

    Deng Y Q, Sheng G M, Yin L J, et al. Impulse pressuring diffusion bonding of titanium to stainless steel using a copper interlayer[J]. Rare Metal Materials and Engineering, 2015, 44(5): 1041 − 1045. doi: 10.1016/S1875-5372(15)30063-1

    [13]

    Kundu S, Sam S, Chatterjee S. Interfacial reactions and strength properties in dissimilar titanium alloy/Ni alloy/microduplex stainless steel diffusion bonded joints[J]. Materials Science & Engineering: A, 2013, 560: 288 − 295. doi: 10.1016/j.msea.2012.09.069

    [14]

    Song T F, Jiang X S, Shao Z Y, et al. Microstructure and mechanical properties of vacuum diffusion bonded joints between Ti-6Al-4V titanium alloy and AISI316L stainless steel using Cu/Nb multi-interlayer[J]. Vacuum, 2017, 145: 68 − 76. doi: 10.1016/j.vacuum.2017.08.017

    [15] 毕志雄, 李雪交, 吴勇, 等. 钛箔/钢爆炸焊接的界面结合性能[J]. 焊接学报, 2022, 43(4): 81 − 85.

    Bi Zhixiong, Li Xuejiao, Wu Yong, et al. Interfacial bonding properties of titanium foil/steel explosive welding[J]. Transactions of the China Welding Institution, 2022, 43(4): 81 − 85.

    [16]

    Vigraman T, Ravindran D, Narayanasamy R. Effect of phase transformation and intermetallic compounds on the microstructure and tensile strength properties of diffusion-bonded joints between Ti-6Al-4V and AISI 304L[J]. Materials & Design, 2012, 36: 714 − 727.

    [17]

    Li S, Chen Y, Zhou X, et al. High-strength titanium alloy/steel butt joint produced via friction stir welding[J]. Materials Letters, 2019, 234: 155 − 158. doi: 10.1016/j.matlet.2018.09.094

    [18]

    Wang T, Zhang B, Wang H, et al. Microstructures and mechanical properties of electron beam-welded titanium-steel joints with vanadium, nickel, copper and silver filler metals[J]. Journal of Materials Engineering and Performance, 2014, 23(4): 1498 − 1504. doi: 10.1007/s11665-014-0897-8

    [19]

    Hao X, Dong H, Xia Y, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100-xCux high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2019, 803: 649 − 657. doi: 10.1016/j.jallcom.2019.06.225

    [20]

    Zhang Y, Chen Y, Zhou J, et al. Experimental and numerical study on microstructure and mechanical properties for laser welding-brazing of TC4 titanium alloy and 304 stainless steel with Cu-base filler metal[J]. Journal of Materials Research and Technology, 2020, 9(1): 465 − 477. doi: 10.1016/j.jmrt.2019.10.075

    [21] 牛小男, 崔丽, 王鹏, 等. 镍铝青铜过渡层对钛合金/不锈钢异种材料激光焊接头组织与力学性能的影响[J]. 焊接学报, 2022, 43(1): 42 − 47.

    Niu Xiaonan, Cui Li, Wang Peng, et al. Effect of nickel aluminum bronze transition layer on microstructure and mechanical properties of laser welded titanium alloy/stainless steel joint[J]. Transactions of the China Welding Institution, 2022, 43(1): 42 − 47.

    [22]

    Li W, Chang J H, Wen B F, et al. Joining of dissimilar metals between magnesium AZ31B and aluminum A6061-T6 using galvanized steel as a transition joining layer[J]. Journal of Iron and Steel Research International, 2022, 29(4): 677 − 686. doi: 10.1007/s42243-021-00589-z

    [23]

    Cao R, Chang J H, Huang Q, et al. Behaviors and effects of Zn coating on welding-brazing process of Al-steel and Mg-steel dissimilar metals[J]. Journal of Manufacturing Processes, 2018, 31: 674 − 688. doi: 10.1016/j.jmapro.2018.01.001

    [24] 黄倩, 曹睿, 朱海霞, 等. 铝/裸钢板冷金属过渡点塞焊接头组织及力学性能[J]. 焊接学报, 2014, 35(11): 59 − 62.

    Huang Qian, Cao Rui, Zhu Haixia, et al. Process and performance of cold metal transfer spot plug welding between aluminum alloy and bare steel[J]. Transactions of the China Welding Institution, 2014, 35(11): 59 − 62.

    [25]

    Zhang B G, Wang T, Chen G Q, et al. Contact reactive joining of TA15 and 304 stainless steel via a copper interlayer heated by electron beam with a beam deflection[J]. Journal of Materials Engineering and Performance, 2012, 21(10): 2067 − 2073. doi: 10.1007/s11665-012-0132-4

    [26] 李标峰. 钛与钢及钛复合钢板的焊接性研究(Ⅱ)[J]. 材料开发与应用, 2004, 19(2): 45 − 46. doi: 10.19515/j.cnki.1003-1545.2004.02.013

    Li Biaofeng. Study on the weldability of titanium and steel and titanium clad steel plate(Ⅱ)[J]. Development and Application of Materials, 2004, 19(2): 45 − 46. doi: 10.19515/j.cnki.1003-1545.2004.02.013

    [27] 常敬欢, 曹睿, 闫英杰. 钛合金/不锈钢冷金属过渡焊接头组织及性能[J]. 焊接学报, 2021, 42(6): 44 − 51.

    Chang Jinghuan, Cao Rui, Yan Yingjie. Microstructure and properties of titanium alloy/stainless steel joint by cold metal transfer joining technology[J]. Transactions of the China Welding Institution, 2021, 42(6): 44 − 51.

  • 期刊类型引用(3)

    1. 暴兴威,许鸿吉,宋睿,吴庆祝,刘楷. 坡口角度对K形对接接头组织与疲劳性能的影响. 电焊机. 2025(01): 108-114 . 百度学术
    2. 黎国宁,张英乔,李志勇,魏守征,任杰亮. 铝合金冷弧焊接熔滴过渡行为分析. 热加工工艺. 2023(11): 49-53 . 百度学术
    3. 刘李宾,魏守征,王建宏,李志勇,张英乔,李玉新. 高速超威弧MIG焊下TC4/5A06接头界面组织特性. 焊接学报. 2023(11): 80-87+133 . 本站查看

    其他类型引用(3)

图(9)  /  表(4)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  37
  • PDF下载量:  44
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-08-19
  • 网络出版日期:  2023-06-18
  • 刊出日期:  2023-07-30

目录

/

返回文章
返回