高级检索

海洋柔性管用耐蚀钢闪光对焊接头组织及性能研究

王宏岩, 高秀华, 李旺, 李通, 杜林秀

王宏岩, 高秀华, 李旺, 李通, 杜林秀. 海洋柔性管用耐蚀钢闪光对焊接头组织及性能研究[J]. 焊接学报, 2023, 44(6): 58-66. DOI: 10.12073/j.hjxb.20220805002
引用本文: 王宏岩, 高秀华, 李旺, 李通, 杜林秀. 海洋柔性管用耐蚀钢闪光对焊接头组织及性能研究[J]. 焊接学报, 2023, 44(6): 58-66. DOI: 10.12073/j.hjxb.20220805002
WANG Hongyan, GAO Xiuhua, LI Wang, LI Tong, DU Linxiu. Microstructure and properties of flash butt welding joints on corrosion resistant steel for marine flexible pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 58-66. DOI: 10.12073/j.hjxb.20220805002
Citation: WANG Hongyan, GAO Xiuhua, LI Wang, LI Tong, DU Linxiu. Microstructure and properties of flash butt welding joints on corrosion resistant steel for marine flexible pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 58-66. DOI: 10.12073/j.hjxb.20220805002

海洋柔性管用耐蚀钢闪光对焊接头组织及性能研究

基金项目: 青年科学基金资助项目(52005228)
详细信息
    作者简介:

    王宏岩,1989年出生,博士研究生;从事耐蚀钢焊接组织与性能研究;Email: hongyanwang0309@163.com

    通讯作者:

    高秀华,1966年出生,博士,教授,博士研究生导师. Email:gaoxiuhua@126.com

  • 中图分类号: TG 453

Microstructure and properties of flash butt welding joints on corrosion resistant steel for marine flexible pipe

  • 摘要: 为了探究高强度海洋柔性管铠装层用钢焊接接头失稳问题,以600 MPa级耐蚀钢为闪光对焊焊接母材,研究不同闪光留量与顶锻留量对接头显微组织及力学性能的影响规律. 结果表明,随顶锻留量增加,焊缝及热影响区粗晶区多边形铁素体含量增加,组织逐渐粗化,接头强度先增加后降低,顶锻留量大于5 mm,接头强度急剧恶化;随闪光留量的增加,焊缝及粗晶热影响区板条贝氏体组织逐渐粗化,接头强度逐渐增加后急剧下降,当闪光留量8 mm时,接头强度严重恶化. 二者都使断后伸长率逐渐提高,但顶锻留量对断后伸长率的影响较大. 闪光留量和顶锻留量为7 mm和4 mm时,焊接样品力学性能最优,热影响区针状铁素体板条宽度大约为0.59 μm,抗拉强度达到688 MPa,屈服强度达到586 MPa,断后伸长率为15%,拉伸断口形式为韧性断裂. 闪光留量与顶锻留量参数的适当匹配形成细小且弥散分布粒状贝氏体可以有效强化钢基体.
    Abstract: In order to investigate the instability of welded steel joints for high-strength Marine flexible pipe armor, taking the hydrogen damage resistant corrosion resistant steel 600 MPa grade as the test object, and the effects of different flash allowance and upset allowance on the microstructure and mechanical properties of the joints were studied. The results show that with the increase of the upset allowance, the polygonal ferrite content of the weld and coarse grain zone in the heat-affected zone increases, and the microstructure gradually coarsens, and the joints strength increases firstly then decreases. When the flash allowance exceeds 5 mm, the joint strength deteriorates sharply. With the increase of flash allowance, the weld and heat-affected zone coarse-grained zone the bainite ferrite gradually coarser, and the joint strength gradually increases and then decreases sharply. When the flash allowance is 8 mm, the joint strength deteriorates seriously. Both of the parameters increase the elongation gradually, but the influence of the upset allowance on the elongation is greater. When the flash allowance and upset allowance are 7 mm and 4 mm, the mechanical properties of the welded samples are the best. The width of the ferrite lath in the heat affected zone is about 0.59 μm, the tensile strength is 688 MPa, the yield strength is 586 MPa, the elongation is 15%, and the tensile fracture form is ductile fracture. The fine and dispersedly distributed granular bainite can be formed by the matching of the flash allowance and the upset allowance parameters, which can effectively strengthen the steel matrix.
  • 图  1   母材显微组织形貌

    Figure  1.   Microstructure of base metal. (a) low magnification; (b) high magnification

    图  2   焊接接头典型横截面低倍形貌

    Figure  2.   Typical macroscopic morphology of welded joint

    图  3   试样1焊缝及热影响区显微组织

    Figure  3.   Microstructure of weld and heat-affected zone under sample 1. (a) WZ; (b) CGHAZ; (c) FGHAZ

    图  7   试样5焊缝及热影响区显微组织

    Figure  7.   Microstructure of weld and heat-affected zone under sample 5. (a) WZ; (b) CGHAZ; (c) FGHAZ

    图  4   试样2焊缝及热影响区显微组织

    Figure  4.   Microstructure of weld and heat-affected zone under sample 2. (a) WZ; (b) CGHAZ; (c) FGHAZ

    图  6   试样4焊缝及热影响区显微组织

    Figure  6.   Microstructure of weld and heat-affected zone under sample 4. (a) WZ; (b) CGHAZ; (c) FGHAZ

    图  5   试样3焊缝及热影响区显微组织

    Figure  5.   Microstructure of weld and heat-affected zone under sample 3. (a) WZ; (b) CGHAZ; (c) FGHAZ

    图  8   试样6焊缝及热影响区显微组织

    Figure  8.   Microstructure of weld and heat-affected zone under sample 6. (a) WZ; (b) CGHAZ; (c) FGHAZ

    图  9   试样7焊缝及热影响区显微组织

    Figure  9.   Microstructure of weld and heat-affected zone under sample 7. (a) WZ; (b) CGHAZ; (c) FGHAZ

    图  10   不同工艺下的室温拉伸性能

    Figure  10.   Tensile properties at room temperature under different processes. (a) effect of upset allowance on the performance of welded joints; (b) effect of flash allowance on the properties of welded joints

    图  11   母材与粗晶热影响区的透射组织

    Figure  11.   TEM microstructure of parent metal and heat affected zone. (a) BM; (b) sample 6 CGHAZ; (c) sample 2 CGHAZ; (d) sample 7 CGHAZ; (e) particles precipitated in the heat affected zone; (f) energy spectrum analysis of precipitates

    图  12   试样2号焊接接头硬度分布

    Figure  12.   Welded joints hardness distribution of sample 2

    图  13   2号试样拉伸试样断口分析

    Figure  13.   Fracture analysis of tensile specimen sample 2. (a) fracture analysis of sample 2; (b) enlarged of Fig. 13a

    表  1   试验钢化学成分(质量分数, %)

    Table  1   Chemical compositions of test steel

    CSPCrMn + Mo + SiTi + NbAl
    0.060.0020.0051.11.30.0340.03
    下载: 导出CSV

    表  2   试验钢的力学性能

    Table  2   Mechanical properties of test steel

    屈服强度
    ReL/MPa
    抗拉强度
    Rm/MPa
    断后伸长率
    A/(%)
    屈强比硬度
    H/HV
    649708260.92247
    下载: 导出CSV

    表  3   焊接工艺参数

    Table  3   Welding process parameters

    试样预热电流
    I1/A
    焊接电流
    I2/A
    闪光留量
    d1/mm
    顶锻留量
    d2/mm
    140027073
    240027074
    340027075
    440027076
    540027054
    640027064
    740027084
    下载: 导出CSV
  • [1]

    Raja W A, Khaled S, Raja J, et al. Blockchain in oil and gas industry: Applications, challenges, and future trends[J]. Technology in Society, 2022, 68: 101941. doi: 10.1016/j.techsoc.2022.101941

    [2]

    Zhang D Z, Li W J, Gao X H, et al. Effect of cold deformation before heat treatment on the hydrogen embrittlement sensitivity of high-strength steel for marine risers[J]. Materials Science & Engineering A, 2022, 845: 143220.

    [3] 张大征, 高秀华, 杜林秀, 等. 多级热处理对柔性立管用高强钢组织性能影响[J]. 东北大学学报(自然科学版), 2020, 41(1): 49 − 54. doi: 10.12068/j.issn.1005-3026.2020.01.009

    Zhang Dazheng, Gao Xiuhua, Du Linxiu, et al. Effect of multistage heat treatment on microstructure and properties of high strength steel with flexible vertical pipe[J]. Journal of Northeastern University(Natural Science), 2020, 41(1): 49 − 54. doi: 10.12068/j.issn.1005-3026.2020.01.009

    [4]

    Pham D C, Sridhar N, Qian X D, et al. A review on design, manufacture and mechanics of composite risers[J]. Ocean Engineering, 2016, 112: 82 − 96. doi: 10.1016/j.oceaneng.2015.12.004

    [5] 杨宁宁, 高秀华, 王鸿轩, 等. 海洋柔性立管用钢的疲劳断裂行为[J]. 轧钢, 2019, 36(3): 6 − 9. doi: 10.13228/j.boyuan.issn1003-9996.20180066

    Yang Ningning, Gao Xiuhua, Wang Hongxuan, et al. Fatigue fracture behavior of marine flexible vertical pipe steel[J]. Steel Rolling, 2019, 36(3): 6 − 9. doi: 10.13228/j.boyuan.issn1003-9996.20180066

    [6]

    Liu Z G, Gao X H, Du L X, et al. Hydrogen assisted cracking and CO2 corrosion behaviors of low-alloy steel with high strength used for armor layer of flexible pipe[J]. Applied Surface Science, 2018, 440: 974 − 991. doi: 10.1016/j.apsusc.2018.01.223

    [7]

    Xu Z X, Lu P, Shu Y. Microstructure and fracture mechanism of a flash butt welded 380CL steel[J]. Engineering Failure Analysis, 2016, 62: 199 − 207. doi: 10.1016/j.engfailanal.2016.02.005

    [8]

    Porcaro R R, Faria G L, Godefroid L B, et al. Microstructure and mechanical properties of a flash butt welded pearlitic rail[J]. Journal of Materials Processing Technology, 2019, 270: 20 − 27. doi: 10.1016/j.jmatprotec.2019.02.013

    [9]

    Wang J, Ma C, Han J, et al. Acquisition of HSLA steel weld joints with excellent mechanical performance through flash butt welding physical simulation[J]. Materials Letters, 2021, 303: 130511. doi: 10.1016/j.matlet.2021.130511

    [10]

    Xi C Y, Sun D Q, Xuan Z Z, et al. Microstructures and mechanical properties of flash butt welded high strength steel joints[J]. Materials & Design, 2016(96): 506 − 514.

    [11] 高世一, 盛安, 郭春富, 等. X65管闪光对焊过程在线监测及工艺控制[J]. 焊接学报, 2016, 37(6): 59 − 64.

    Gao Shiyi, Sheng An, Guo Chunfu, et al. On-line monitoring and process control of pipe flash butt welding[J]. Transactions of The China Welding Institution, 2016, 37(6): 59 − 64.

    [12]

    Zhang D Q, Chen S C. A novel kernelized fuzzy c-means algorithm with application in medical image segmentation[J]. Artificial Intelligence in Medicine, 2004, 32(1): 37 − 50. doi: 10.1016/j.artmed.2004.01.012

    [13]

    Lu P, Xu Z X, Jiang K Y. Influence of flash butt welding parameters on microstructure and mechanical properties of HSLA 590CL welded joints in wheel rims[J]. Journal of Materials Research, 2017, 32(4): 831 − 842. doi: 10.1557/jmr.2016.509

    [14]

    Aleksandra K, Krzysztof R, Roman K, et al. Microstructure-based approach to the evaluation of welded joints of bainitic rails designed for high-speed railways[J]. Journal of Constructional Steel Research, 2020, 175: 106372. doi: 10.1016/j.jcsr.2020.106372

  • 期刊类型引用(2)

    1. 刘瑶,王磊,汤莹莹,陈悦,杨成刚,夏春. 电子束非穿透焊接匙孔行为数值模拟及气孔抑制方法. 电焊机. 2023(06): 1-7 . 百度学术
    2. 熊宁,张莹莹,邱玺,冯波,陈福鸽,王广达. 电子束焊接钼铼合金组织和性能研究. 稀有金属. 2022(09): 1172-1180 . 百度学术

    其他类型引用(2)

图(13)  /  表(3)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  40
  • PDF下载量:  43
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-08-04
  • 网络出版日期:  2023-04-14
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回