Effect of laser wobble on energy distribution and weld forming of Ti60 alloy laser welding
-
摘要: 对2.0 mm厚Ti60合金进行激光摆动焊接,研究光束圆形摆动时摆动频率和摆动幅值对焊缝成形及能量分布的影响. 结果表明:相较常规激光焊接,激光摆动焊接可以明显改善Ti60合金焊接接头焊缝成形;光束摆动参数对焊缝成形的影响与激光能量分布密切相关,可通过调整能量分布控制焊缝成形. 当摆动频率为100 ~ 150 Hz,摆动幅值为0.5 ~ 1.0 mm时,激光能量分布相对均匀,可获得焊缝成形良好的Ti60合金激光焊接接头. 与常规激光焊缝相比,摆动焊缝熔宽增加约30%,整体飞溅数量减少30%以上,为对接焊缝提供了更大的间隙适应性并有效改善了焊接质量. 在光束摆动参数中,摆动幅值对焊缝成形特征及能量分布的影响更明显.Abstract: Laser wobble welding is performed on a 2.0 mm-thick Ti60 sheet. The effects of wobble frequency and amplitude on weld forming and energy distribution are investigated when wobble track is circular. The result shows that, the weld forming of Ti60 welded joint can be significantly improved by using laser wobble welding. The effect of wobble parameters on weld forming is closely related to energy distribution, and the weld forming can be controlled by adjusting the energy distribution. When the wobble frequency and amplitude are in the range of 100 ~ 150 Hz and 0.5 ~ 1.0 mm, respectively, the laser energy distribution is relatively uniform, a uniform and a high-quality weld can be obtained. Comparing with the conventional laser welds, the weld width increases 30% and welding spatter decreases more than 30%, which offers a larger gap margin and an effect way of weld quality improvement. The wobble amplitude has a stronger influence on weld forming and energy distribution than the wobble frequency.
-
Keywords:
- Ti60 alloy /
- laser wobble welding /
- weld forming /
- energy distribution
-
0. 序言
金刚石是集物理、化学和力学等优良性能于一身的材料[1-2],金刚石除了极高的硬度和优异的耐磨性等力学性能外,电学、光学、热学、声学等方面也十分优异,在光电子封装、光学窗口和太赫兹传输领域有着重要应用[3-5]. 在实际的应用中,金刚石往往不会单独使用,需要连接在其他金属材料上才能充分发挥其性能. 无氧铜具有高导电性、导热性和良好的韧性以及焊接性能[6-7],将金刚石与无氧铜结合使用可以实现性能上的互补. 例如,电子封装领域应用中的金刚石与无氧铜底座连接[8],微波传输领域的金刚石窗口和水冷铜环连接[9].
钎焊工艺简单、成本低、接头变形小[10],广泛应用于连接金刚石和金属材料,然而金刚石(1 × 10−6/℃)热膨胀系数与无氧铜(17.7 × 10−6/℃)相差较大,在钎焊过程中会产生很大的残余应力导致裂纹等缺陷,其次金刚石化学结构稳定,具有很高的界面能,表面几乎不与普通的钎料润湿,很难与其他金属和非金属发生化学反应,形成冶金结合,另外,在高温下钎焊金刚石表面可能会出现石墨化现象,对金刚石性能有一定的影响[11-13].
为解决上述问题,可以通过在钎料中加入活性元素(如Ti,Cr,V),利用活性元素与金刚石反应形成碳化物,来改善钎料在金刚石上的润湿性并提高结合强度[14-15]. WU等人[16]研究了AgCuTi钎料在金刚石上润湿铺展,AgCuTi/金刚石润湿体系在880 ℃保温时间40 min,平衡时润湿角约为8°. Ti与金刚石反应生成TiC界面反应层,最终润湿角和铺展动力学都由界面反应层的形成控制[17];LIU等人[14]用AgCuTi活性钎料成功钎焊了CVD(chemical vapor deposition)纳米金刚石薄膜和TC4合金,钎焊接头完整,无明显缺陷;XU等人[18]通过在AgCu基钎料中添加Ti,Sn元素,提升了钎料在金刚石上的润湿性并降低了钎焊温度,使用AgCu-10Sn-1Ti钎料钎焊金刚石和无氧铜,接头最高剪切强度达到了256.1 MPa. 此外,钎焊工艺参数和气氛对接头连接质量有非常大的影响,根据XU等人[19]试验结果显示,当钎焊温度低或保温时间短,由于钎料流动不充分以及层间流动性差,会形成一些凝固缺陷和金属间化合物簇,相反,当温度过高或保温时间过长会导致钎料流失以及生成过厚的碳化物反应层,进而影响钎焊质量;WU等人[20]研究发现在Ar气保护和真空钎焊环境下,钎料不仅能充分润湿铺展,而且金刚石石墨化程度较小. 上述研究表明可以采用活性钎焊的方法,在真空环境下调整合理的工艺参数,实现金刚石与无氧铜之间的高质量连接.
文中使用AgCuTi活性钎料在真空环境下钎焊连接金刚石与无氧铜,对无氧铜/金刚石钎焊接头界面的微观结构进行了表征,详细阐述了接头界面微观结构和组织演变的机理,分析了温度和保温时间对接头界面微观组织及力学性能的影响,最后,讨论了钎焊接头的力学性能和断裂模式.
1. 试验方法
用尺寸5 mm × 5 mm × 0.5 mm和5 mm × 5 mm × 1.5 mm的CVD多晶金刚石分别用于钎焊试验和钎焊接头剪切强度测试,对应的无氧铜选用尺寸15 mm × 15 mm × 1.5 mm用于钎焊试验,15 mm × 15 mm × 3 mm用于剪切试验. 钎料选用AgCu4.5Ti箔片(50 μm厚),熔点约为780 ℃,密度为9.9 kg/cm3,热膨胀系数为(18 × 10−6//℃).
试验前,需要用砂纸研磨基材和钎料,去除表面的氧化膜,然后在丙酮、酒精和3% ~ 5%的氢氧化钠中按顺序超声清洗10 min去除表面油污和污染物.钎焊试验在HHVC 1300真空热压炉中进行,如图1所示,钎焊金刚石无氧铜装配方案见图1(a),需要在金刚石上方搭载一块小压块,给试样提供压力防止钎焊过程中金刚石滑动并确保金刚石与钎料充分接触.剪切试验在万能拉伸实验机下进行,剪切示意图见图1(b),位移速率为1.5 mm/min,每组至少测实3个实样,取平均剪切强度.
钎焊完成后,研磨实样直至露出界面,抛光后使用扫描电子显微镜(scanning electron microscope,SEM)和X射线光谱仪(energy dispersive pectrometer,EDS)分析界面组织形态、反应物的组成成分. 为确定接头中间层的反应相,进行X射线衍射(X-Ray diffractometer,XRD)分析,此外,通过光学显微镜、扫描电镜和能谱仪对钎焊接头的断裂位置和断口形貌进行分析.
2. 试验结果及分析
2.1 金刚石/AgCuTi/无氧铜钎焊接头界面微观结构
在910 ℃保温10 min金刚石/AgCuTi/无氧铜钎焊接头界面微观结构和元素分布,如图2所示. 从图中可见,接头结合良好,几乎没有如气孔、裂纹、夹杂等缺陷. 整个钎焊接头的结构为紧挨着金刚石的深灰色层,由白色相和灰色相组成的中间层,并且中间层与无氧铜基板之间没有明显的界面,白色相像树枝一样延伸至无氧铜基板内部. 图2(c)分别显示了C元素,Ti元素,Cu元素,Ag元素的分布情况,从图2(c)观察到Ti元素在金刚石一侧富集,推测这是由于Ti和C反应生成了TiC反应层,并且发现Ag元素向无氧铜基体中扩散,同时无氧铜基板中的Cu元素向钎料方向扩散.
金刚石和无氧铜之间的钎焊接头界面结构较为简单,没有明显缺陷,并且不同元素之间的相互作用和反应,导致了元素富集和化合物形成以及AgCuTi钎料和无氧铜基板的相互溶解和扩散.
为了研究钎焊接头的界面微观组织,图2(b)中各点的主要元素原子百分比见表1,在图2(b)中观察到金刚石一侧的深灰色相,根据点B的EDS结果,该相富含Ti和C元素,并且Ti和C的原子百分比约为1∶1,因此推测深灰色相为Ti和C反应生成的TiC,TiC的形成可以降低界面张力,改善AgCuTi钎料在金刚石上的润湿性,是金刚石与无氧铜高质量钎焊连接的关键. 其中C标记的白色相以及D标记的灰色相分别为Ag(s,s)和Cu(s,s). 因此,在钎焊温度910 ℃保温10 min下得到的钎焊接头界面结构为金刚石/TiC/Cu(s,s)、Ag(s,s)/无氧铜.
表 1 图2(b)中标记区域的元素组成和可能相(质量分数,%)Table 1. Element composition and possible phases of the marked area in Fig 2 (b)位置 Ag Cu Ti C 可能存在的相 A — — 0.01 99.99 金刚石 B 1.24 1.84 45.81 41.11 TiC C 82.64 8.14 9.21 — Ag(s,s) D 9.56 78.05 12.39 — Cu(s,s) 2.2 钎焊温度和保温时间对金刚石/AgCuTi/无氧铜接头界面微观组织的影响
金刚石/AgCuTi/无氧铜接头在不同温度下保温10 min的界面微观结构,如图3所示. 结果表明,钎焊温度对钎焊接头界面微观结构有显著影响,但是无论温度如何,接头均未发现明显缺陷并且生成的反应物种类没有变化. 发现当钎焊温度870 ℃以下时,由Cu(s,s)、Ag(s,s)组成的中间层厚度分别为54 μm和57.3 μm,但当温度升至910 ℃以上时中间层厚度增加到152.5 μm和143.8 μm. 钎焊温度升高促进了钎料和无氧铜基板的互溶和扩散,同时过高的温度会导致钎料和基板之间过度溶解扩散,Ag(s,s)会相对减少见图3(d).
在870 ℃下,不同保温时间钎焊接头界面,如图4所示. 可以发现随着保温时间的增加,接头的界面组织并没有明显变化,但是过长的保温时间会造成部分钎料的流失见图4(d),并且发现随着保温时间的增加,中间层的厚度没有明显变化,但是温度升高中间层的厚度会明显增加,见图3(b)和图3(c),因此,钎料与基板的互溶和扩散主要取决于温度.
根据以上分析及相关文献,接头界面微观结构的成型可以分为3个阶段,如图5所示. 第1阶段主要涉及无氧铜基板和熔融钎料之间的原子扩散,随着温度升高,钎料开始融化,熔融钎料和无氧铜基板中的原子相互扩散;第2阶段主要发生在保温阶段,在这个阶段,无氧铜基板和熔融钎料之间的原子扩散持续进行,钎料中的Ag元素在毛细作用下向无氧铜基板中扩散,基板中的Cu元素在浓度梯度驱动下向钎料中扩散[16],造成了钎料与无氧铜基板的互溶和扩散,同时,熔融钎料中的Ti元素扩散到金刚石表面并与其反应形成TiC反应层.
$$\mathrm{Ti}+\mathrm{C} \rightarrow \mathrm{TiC}$$ (1) 形成TiC吉布斯自由能远低于形成Ti-Cu金属间化合物(TiCu,Ti2Cu3,Ti3Cu4),因此,Ti可能更倾向于和C反应形成TiC反应层,反应层的形成可以促进润湿,并且可以和金刚石之间形成稳定的化学键和,提高了钎焊接头的强度;最后一个阶段是关于熔融钎料冷却凝固的过程,在凝固的过程中形成了Ag(s,s),Cu(s,s).
2.3 钎焊温度对接头力学性能的影响
为了评估钎焊接头的力学性能,在室温下对不同钎焊温度的试验进行剪切强度试验,如图6所示. 图6(a)为不同钎焊温度下钎焊接头的剪切强度,观察到当温度从830 ℃升高至870 ℃时,接头剪切强度先从200.8 MPa增加到峰值223.7 MPa,然而随着温度继续升高,剪切强度开始降低,当950 ℃时剪切强度最低为178 MPa.
不同温度保温10 min无氧铜一侧剪切面的SEM断口,如图7所示.发现当钎焊温度950 ℃时,断裂表面发现大量深灰色物质见图7(d),由表2中的EDS结果和图7(b)XRD分析结果表明深灰色物质为TiC. 950 ℃时接头在TiC反应层处断裂,为脆性断裂.而在钎焊温度830 ~ 910 ℃时断裂表面成分均匀,主要由钎料以及少量的脱落金刚石组成见图7(a) ~ 图7(c),由Ag(s,s)和Cu(s,s)组成的中间层具有良好韧性,这个部位断裂表现出更高的强度,为韧性断裂.
表 2 图7中标记区域的元素组成和可能的相(原子分数,%)Table 2. Element composition and possible phases of the marked area in Fig 7位置 Ag Cu Ti C 可能存在的相 A 0.86 9.15 13.35 76.63 金刚石 B 3.70 65.93 1.80 28.57 Cu(s,s) C 66.82 15.55 0.47 17.16 Ag(s,s) D 18.55 3.60 36.81 41.05 TiC E 64.46 8.76 6.91 19.87 Ag(s,s) F 7.94 66.23 2.97 22.86 Cu(s,s) 金刚石/无氧铜钎焊接头的剪切强度主要与以下两个因素有关,金刚石/钎料层界面结合强度,热膨胀差异引起的残余应力. 其中,TiC反应层是影响接头高强度连接的关键因素之一,一方面TiC反应层在金刚石和钎料之间形成了稳定的化学键,提高了整个接头的强度和稳定性,但另一方面,由于TiC是脆性相,过厚的反应层会降低接头的剪切强度. 温度升高会促进C和Ti的反应,生成过厚的TiC反应层,导致950 ℃时剪切强度明显降低. 残余应力也是影响接头连接强度的关键因素,AgCuTi钎料能够有效缓解金刚石和无氧铜在钎焊过程中由于热膨胀差异引起的残余应力,但是当温度在910 ℃以上时,钎料与无氧铜基板的互溶和扩散导致接头中钎料成分减小,进一步降低了接头的剪切强度.
3. 结论
(1)钎焊接头的典型界面微观结构为金刚石/TiC/Ag(s,s)+Cu(s,s)/无氧铜.
(2)钎焊温度对钎焊接头的微观结构有显著影响. 当温度在910 ℃以上时,AgCuTi钎料与无氧铜基板的互溶和扩散现象非常严重,但是在870 ℃,保温时间的增加对接头界面结构并没有明显的影响,钎料与无氧铜基板的互溶和扩散主要与温度有关.
(3)随着温度的升高,接头的剪切强度先增加后减少,在钎焊温度870 ℃保温时间10 min,剪切强度最高,可达223.6 MPa,断裂主要发生在TiC反应层和钎料层.
-
表 1 Ti60合金的化学成分(质量分数,%)
Table 1 Chemical compositions of Ti60 titanium alloy
Al Sn Zr Mn Nb Ta Si Ti 5.2 ~ 6.2 3.0 ~ 4.5 2.5 ~ 4.0 0.2 ~ 1.0 0.2 ~ 0.7 0.2 ~ 1.5 0.2 ~ 0.6 余量 -
[1] 郭举乐, 田永武. 600 ℃高温钛合金的研究进展[J]. 铸造技术, 2020, 41(9): 894 − 896. Guo Jule, Tian Yongwu. Research and development of 600 ℃ high temperature titanium alloys[J]. Foundry Technology, 2020, 41(9): 894 − 896.
[2] 李毅, 赵永庆, 曾卫东, 等. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280 − 282. Li Yi, Zhao Yongqing, Zeng Weidong, et al. Application and development of aerial titanium alloys[J]. Materials Reports, 2020, 34(Z1): 280 − 282.
[3] 芦伟, 马旭颐, 段爱琴, 等. BTi6431S钛合金光纤激光焊接成形及稳定性分析[J]. 激光与光电子学进展, 2020, 57(13): 220 − 225. Lu Wei, Ma Xuyi, Duan Aiqin, et al. Weld formation and stability analysis of fiber laser beam welded BTi6431S titanium alloy[J]. Laser and Optoelectronics Progress, 2020, 57(13): 220 − 225.
[4] Li J, Liu Y, Zhen Z, et al. Analysis and improvement of laser wire filling welding process stability with beam wobble[J]. Optics & Laser Technology, 2021, 134: 106594.
[5] Hao K, Geng L, Ming G, et al. Weld formation mechanism of fiber laser oscillating welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2015, 225: 77 − 83. doi: 10.1016/j.jmatprotec.2015.05.021
[6] Hugger F, Hofmann K, Kohl S, et al. Spatter formation in laser beam welding using laser beam oscillation[J]. Welding in the World, 2015, 59(2): 165 − 172. doi: 10.1007/s40194-014-0189-9
[7] 包刚, 彭云, 陈武柱, 等. 超细晶粒钢光束摆动激光焊接的研究[J]. 应用激光, 2002, 22(2): 203 − 205. doi: 10.3969/j.issn.1000-372X.2002.02.032 Bao Gang, Peng Yun, Chen Wuzhu, et al. Study on laser welding of ultra-fine grained steel with weaving beam[J]. Applied Laser, 2002, 22(2): 203 − 205. doi: 10.3969/j.issn.1000-372X.2002.02.032
[8] Li S, Mi G, Wang C, et al. A study on laser beam oscillating welding characteristics for the 5083 aluminum alloy: Morphology, microstructure and mechanical properties[J]. Journal of Manufacturing Processes, 2020, 53: 12 − 20. doi: 10.1016/j.jmapro.2020.01.018
[9] 李军兆, 孙清洁, 张清华, 等. 空间多位置摆动激光填丝焊接熔池动态行为及焊缝成形[J]. 焊接学报, 2021, 42(10): 35 − 39,61. Li Junzhao, Sun Qingjie, Zhang Qinghua, et al. Research on molten pool dynamic behavior and weld formation of transverse oscillating laser welding process for various positions in space[J]. Transactions of the China Welding Institution, 2021, 42(10): 35 − 39,61.
[10] 芦伟, 马旭颐, 巩玥, 等. 光束摆动对铝合金激光搭接焊缝成形及组织的影响[J]. 应用激光, 2022, 42(1): 9 − 14. doi: 10.14128/j.cnki.al.20224201.009 Lu Wei, Ma Xuyi, Gong Yue, et al. Effect of laser wobble on the weld formation and microstructure of aluminum alloy lap joint[J]. Applied Laser, 2022, 42(1): 9 − 14. doi: 10.14128/j.cnki.al.20224201.009
[11] 陈根余, 王彬, 钟沛新, 等. 2060铝锂合金扫描填丝焊接工艺[J]. 焊接学报, 2020, 41(4): 44 − 50. doi: 10.12073/j.hjxb.20191016002 Chen Genyu, Wang Bin, Zhong Peixin, et al. Laser scanning welding of 2060 Al-Li alloy with filler wire[J]. Transactions of the China Welding Institution, 2020, 41(4): 44 − 50. doi: 10.12073/j.hjxb.20191016002
[12] 雷正龙, 毕思源, 张新瑞, 等. 2195铝锂合金T型接头双侧激光摆动焊接组织与性能分析[J]. 中国激光, 2022, 49(8): 30 − 39. Lei Zhenglong, Bi Siyuan, Zhang Xinrui, et al. Microstructure and mechanical properties of double-sided laser swing welding of 2195 Al-Li alloy T-joints[J]. Chinese Journal of Lasers, 2022, 49(8): 30 − 39.
[13] Wang Z, Oliveira J P, Zeng Z, et al. Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties[J]. Optics & Laser Technology, 2018, 111: 58 − 65.
[14] Fetzer F, Sommer M, Weber R, et al. Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi[J]. Optics and Lasers in Engineering, 2018, 108: 68 − 77. doi: 10.1016/j.optlaseng.2018.04.012
[15] Wang L, Gao M, Zhang C, et al. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy[J]. Materials and Design, 2016, 108: 707 − 717. doi: 10.1016/j.matdes.2016.07.053
[16] Thiel C, Hess A, Weber R, et al. Stabilization of laser welding processes by means of beam oscillation[C]//Laser Sources and Applications. SPIE, 2012, 8433: 225-234.
[17] 李坤, 王威, 单际国, 等. TC4 钛合金光纤激光摆动焊抑制小孔型气孔的原因分析[J]. 焊接学报, 2016, 37(11): 43 − 46. Li Kun, Wang Wei, Shan Jiguo, et al. Analysis of keyhole-type pore suppressing in fiber laser welded TC4 titanium alloy with beam weaving[J]. Transactions of the China Welding Institution, 2016, 37(11): 43 − 46.
[18] Long J, Zhang L J, Zhuang M X, et al. Narrow-gap laser welding with beam wobbling and filler wire and microstructural performance of joints of thick TC4 titanium alloy plates[J]. Optics and Laser Technology, 2022, 152: 108089. doi: 10.1016/j.optlastec.2022.108089
[19] Squillace A, Prisco U, Ciliberto S, et al. Effect of welding parameters on morphology and mechanical properties of Ti-6Al-4V laser beam welded butt joints[J]. Journal of Materials Processing Technology, 2012, 212(2): 427 − 436. doi: 10.1016/j.jmatprotec.2011.10.005
[20] Mahrle A, Beyer E. Modeling and simulation of the energy deposition in laser beam welding with oscillatory beam deflection[C]//International Congress on Applications of Lasers and Electro-Optics. Laser Institute of America, 2007.
[21] Li J Z, Sun Q J, Kang K Q, et al. Process stability and parameters optimization of narrow-gap laser vertical welding with hot wire for thick stainless steel in nuclear power plant[J]. Optics and Laser Technology, 2020, 123: 105921. doi: 10.1016/j.optlastec.2019.105921