高级检索

碳化物析出对ENiCrFe-3预边堆焊异种钢焊缝力学性能影响的数值模拟

樊佳伟, 李卓轩, 吴昊盛, 刘光银, 张建晓, 黄健康

樊佳伟, 李卓轩, 吴昊盛, 刘光银, 张建晓, 黄健康. 碳化物析出对ENiCrFe-3预边堆焊异种钢焊缝力学性能影响的数值模拟[J]. 焊接学报, 2023, 44(6): 67-73. DOI: 10.12073/j.hjxb.20220721001
引用本文: 樊佳伟, 李卓轩, 吴昊盛, 刘光银, 张建晓, 黄健康. 碳化物析出对ENiCrFe-3预边堆焊异种钢焊缝力学性能影响的数值模拟[J]. 焊接学报, 2023, 44(6): 67-73. DOI: 10.12073/j.hjxb.20220721001
FAN Jiawei, LI Zhuoxuan, WU Haosheng, LIU Guangyin, ZHANG Jianxiao, HUANG Jiankang. Numerical study of the effect of carbide precipitation on the mechanical properties of ENiCrFe-3 pre-edge welded dissimilar steel welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 67-73. DOI: 10.12073/j.hjxb.20220721001
Citation: FAN Jiawei, LI Zhuoxuan, WU Haosheng, LIU Guangyin, ZHANG Jianxiao, HUANG Jiankang. Numerical study of the effect of carbide precipitation on the mechanical properties of ENiCrFe-3 pre-edge welded dissimilar steel welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 67-73. DOI: 10.12073/j.hjxb.20220721001

碳化物析出对ENiCrFe-3预边堆焊异种钢焊缝力学性能影响的数值模拟

基金项目: 国家自然科学基金资助项目(52175324)
详细信息
    作者简介:

    樊佳伟,1986年出生,硕士,主要从事机械设备制造、检测及测试等方面工作与研究. Email: fjw1986@126.com

    通讯作者:

    黄健康,1981年出生,博士,教授,博士生导师;主要从事异种金属连接,焊接过程中物理、检测及控制等领域的研究,已发表论文200余篇. Email: sr2810@163.com

  • 中图分类号: TG 407

Numerical study of the effect of carbide precipitation on the mechanical properties of ENiCrFe-3 pre-edge welded dissimilar steel welds

  • 摘要: 为避免异种钢焊接中的元素扩散富集现象,文中采用预边堆焊ENiCrFe-3过渡层的方法,实现了异种钢的良好焊接,但在焊接接头中发现了碳化物的析出现象,进而采用晶体塑性有限元方法,构建了晶界处添加碳化物的晶体塑性有限元分析模型. 模拟结果表明,碳化物析出相会对晶粒内部与晶界上的应力应变分布产生显著影响,由于碳化物含量增加,夹杂物的区域应力集中增大,三晶粒交点是焊缝力学性能最薄弱的区域,晶界交汇处应力分布不对称,通常最先失效,成为断裂源.
    Abstract: In order to avoid the phenomenon of element diffusion enrichment in the welding of dissimilar steels, this paper uses the method of pre-edge overlay welding ENiCrFe-3 transition layer to achieve a good weld of dissimilar steels, but the precipitation of carbide was found in the welded joint, and then the crystal plasticity finite element method was used to construct a crystal plasticity finite element analysis model with the addition of carbide at grain boundaries. Simulation results show that: carbide precipitation phase will have a significant effect on the stress-strain distribution within and on the grain boundaries, due to the increase in carbide content, the stress concentration increases in the region of inclusions, the three-grain intersection is the weakest region of the mechanical properties of the weld, and the stress distribution at the intersection of the grain boundaries of the three grains is asymmetric and usually the first to fail and become a source of fracture.
  • 图  1   焊接过程示意图

    Figure  1.   Schematic diagram of the welding process

    图  2   12Cr2Mo1R/ ENiCrFe-3界面碳元素分布

    Figure  2.   Carbon element distribution at the 12Cr2Mo1R/ ENiCrFe-3 interface

    图  3   焊缝显微组织形貌

    Figure  3.   Weld microstructure morphology. (a) without heat treatment; (b) 8 h heat treatment; (c) 32 h heat treatment

    图  4   预边堆焊ENiCrFe-3拉伸曲线分析

    Figure  4.   Tensile curve analysis of pre-edge welded ENiCrFe-3

    图  5   拉伸断口界面的碳化物颗粒

    Figure  5.   Carbide particles at the tensile fracture interface

    图  6   4种不同碳化物含量模型

    Figure  6.   Four models with different carbide contents. (a) 0.63%; (b) 1.55%; (c) 3.58%; (d) 6.94%

    图  7   模拟结果与试验结果的应力-应变曲线

    Figure  7.   Stress-strain curve of simulation results and test results

    图  8   碳化物含量为0.63%的应力应变分布云图

    Figure  8.   Stress-strain distribution clouds for carbide content of 0.63%. (a) image of stress distribution; (b) image of strain distribution

    图  9   碳化物含量为1.55%的应力应变分布云图

    Figure  9.   Stress-strain distribution clouds for carbide content of 1.55%. (a) image of stress distribution; (b) image of strain distribution

    图  10   碳化物含量为3.58%的应力应变分布云图

    Figure  10.   Stress-strain distribution cloud for carbide content of 3.58%. (a) image of stress distribution; (b) image of strain distribution

    图  11   不同碳化物含量下切应力分布

    Figure  11.   Distribution of shear stress under different carbide conditions. (a) 0.63%; (b) 1.55%; (c) 3.58%; (d) 6.94%

    图  12   碳化物呈连续条状的应变、应力分布

    Figure  12.   Strain and stress distribution of carbide in continuous strip. (a) image of stress distribution; (b) image of strain distribution

    图  13   应力应变曲线

    Figure  13.   Stress-strain curve

    图  14   力学性能随碳化物含量变化

    Figure  14.   Variation of mechanical properties with carbide content. (a) tensile strength; (b) yield strength; (c) strain

    图  15   裂纹形核、扩展示意图

    Figure  15.   Crack nucleation, propagation diagram

    图  16   晶体内部位错运动演化

    Figure  16.   Evolution of dislocation motion inside the crystal

    表  1   基材取向分布

    Table  1   Substrate orientation distribution

    晶粒φ1φφ2
    C1334.889.356283.897
    C290.41426.21429.908
    C3134.89133.50240.20
    C4109.015.9288325.66
    C552.097161.7098.100
    C6358.65152.6184.727
    C7168.5724.71929.376
    C8196.050.1030111.86
    下载: 导出CSV

    表  2   晶体塑性材料参数

    Table  2   Crystal plastic material parameters

    材料C11 R1/GPaC12 R2/GPaC44 R3/GPa参考应变率ε−1/s−1初始硬化模量 R4/MPa初始临界剪应力 R5/MPa饱和应力 R6/MPa自硬化系数潜硬化系数
    基体材料311153790.001250602400.20.2
    碳化物材料375161130.00110025400.20.1
    下载: 导出CSV
  • [1] 杨光磊, 王东, 李玉艳, 等. ENiCrFe-3过渡层对钴基硬质层成分和性能的影响[J]. 热加工工艺, 2019, 48(4): 131 − 134. doi: 10.14158/j.cnki.1001-3814.2019.04.033

    Yang Guanglei, Wang Dong, Li Yuyan, et al. Effect of ENiCrFe-3 transition layer on composition and properties of cobalt base hard layer[J]. Hot Working Technology, 2019, 48(4): 131 − 134. doi: 10.14158/j.cnki.1001-3814.2019.04.033

    [2] 韩红梅, 林文彬, 赵瑞奇. Inconel 600合金材料的焊接工艺[J]. 焊接, 2008(2): 63 − 64. doi: 10.3969/j.issn.1001-1382.2008.02.020

    Han Hongmei, Lin Wenbin, Zhao Ruiqi. Welding process for Inconel 600 alloy materials[J]. Welding & Joining, 2008(2): 63 − 64. doi: 10.3969/j.issn.1001-1382.2008.02.020

    [3] 陈燕, 张学刚, 陈波, 等. 适合全位置焊接的ENiCrFe-3焊条的研制[J]. 机械制造文摘(焊接分册), 2019(5): 33 − 36.

    Chen Yan, Zhang Xuegang, Chen Bo, et al. Development of nickel base alloy covered electrode ENiCrFe-3 for all position welding[J]. Welding Digest of Machinery Manufacturing, 2019(5): 33 − 36.

    [4] 叶有俊, 巩建鸣, 姜勇. 等温时效模拟研究12Cr1MoV钢在长期高温服役过程中碳化物的转变规律[J]. 机械工程材料, 2009, 33(12): 20 − 23.

    Ye Youjun, Gong Jianming, Jiang Yong. Carbide transformation rule of 12Cr1MoV steel serviced for long-term at high temperature studied by isothermal aging simulation[J]. Materials for Mechanical Engineering, 2009, 33(12): 20 − 23.

    [5]

    Hidalgo J, Vittorietti M, Farahani H, et al. Influence of M23C6 carbides on the heterogeneous strain development in annealed 420 stainless steel[J]. Acta Materialia, 2020, 200: 74 − 90. doi: 10.1016/j.actamat.2020.08.072

    [6]

    Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications[J]. Acta Materialia, 2010, 58(4): 1152 − 1211. doi: 10.1016/j.actamat.2009.10.058

    [7]

    Chen C W, Machlin E S. On the mechanism of interrystalline cracking[J]. Acta Metallurgica, 1956, 4(6): 655 − 656. doi: 10.1016/0001-6160(56)90171-7

    [8]

    Dunand D C, Han B Q, Jansen A M. Monkman-grant analysis of creep fracture in dispersion-strengthened and particulate-reinforced aluminum[J]. Metallurgical and Materials Transactions A, 1999, 30: 829 − 838. doi: 10.1007/s11661-999-1016-6

    [9]

    Wilson D V. Precipitation and growth of carbide particles in a cyclically strained low-carbon steel[J]. Acta Metallurgica, 1973, 21(5): 673 − 682. doi: 10.1016/0001-6160(73)90076-X

    [10]

    Sun H Q, Irwan R, Huang H, et al. Effect of microstructure on mechanical properties and wear characteristics of cemented tungsten carbides[J]. Advanced Materials Research, 2009, 76-78: 609 − 612. doi: 10.4028/www.scientific.net/AMR.76-78.609

  • 期刊类型引用(1)

    1. 孟美情,韩俭,朱瀚钊,梁哲滔,蔡养川,张欣,田银宝. 基于多丝电弧增材制造研究现状. 材料工程. 2025(05): 46-62 . 百度学术

    其他类型引用(1)

图(16)  /  表(2)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  46
  • PDF下载量:  45
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-07-20
  • 网络出版日期:  2023-04-17
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回