高级检索

搅拌摩擦热力耦合条件下Q&P980钢焊核区组织演变规律

武晓燕, 蔺宏涛, 王怡嵩, 江海涛

武晓燕, 蔺宏涛, 王怡嵩, 江海涛. 搅拌摩擦热力耦合条件下Q&P980钢焊核区组织演变规律[J]. 焊接学报, 2023, 44(6): 120-128. DOI: 10.12073/j.hjxb.20220713001
引用本文: 武晓燕, 蔺宏涛, 王怡嵩, 江海涛. 搅拌摩擦热力耦合条件下Q&P980钢焊核区组织演变规律[J]. 焊接学报, 2023, 44(6): 120-128. DOI: 10.12073/j.hjxb.20220713001
WU Xiaoyan, LIN Hongtao, WANG Yisong, JIANG Haitao. The microstructure evolution in nugget zone of Q&P980 steel joints under the condition of friction stir welding thermal-mechanical couple effects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 120-128. DOI: 10.12073/j.hjxb.20220713001
Citation: WU Xiaoyan, LIN Hongtao, WANG Yisong, JIANG Haitao. The microstructure evolution in nugget zone of Q&P980 steel joints under the condition of friction stir welding thermal-mechanical couple effects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 120-128. DOI: 10.12073/j.hjxb.20220713001

搅拌摩擦热力耦合条件下Q&P980钢焊核区组织演变规律

详细信息
    作者简介:

    武晓燕,博士;主要从事金属材料的焊接及数值模拟;Email: wuxiaoyan@ustb.edu.cn

    通讯作者:

    江海涛,研究员,博士生导师;Email: jianght@ustb.edu.cn

  • 中图分类号: TG 457

The microstructure evolution in nugget zone of Q&P980 steel joints under the condition of friction stir welding thermal-mechanical couple effects

  • 摘要: 采用搅拌摩擦焊接技术焊接Q&P980钢,研究搅拌摩擦高温和塑性变形综合作用对Q&P980钢焊核区组织演变的影响规律. 结果表明,焊核区的组织演化受峰值温度、剧烈塑性变形和焊后冷却速率多因素协同调控. 焊核区的峰值温度主要由搅拌头的旋转速度控制,旋转速度越大,焊接峰值温度越高;焊后冷却速率主要由搅拌头的焊接速度控制,焊接速度越大,焊后冷却速度越大,材料受到高温塑性变形的影响越小. 当旋转速度控制在400 r/min时,随着焊接速度从50 mm/min增加到400 mm/min,焊核区组织演变规律为马氏体/铁素体/残余奥氏体→马氏体,晶粒尺寸逐渐粗化. 当焊接速度控制在100 mm/min时,随着旋转速度从200 r/min增加到600 r/min,焊核区组织演变规律为马氏体/铁素体/残余奥氏体→马氏体→马氏体/贝氏体,晶粒尺寸逐渐细化.
    Abstract: The friction stir welding technique was used to weld the Q&P980 steel and the microstructure evolution in the nugget zone was investigated under the conditions of high temperature and severe plastic deformation. The results indicated that, the microstructure was determined by the synthetic effects of peak temperature, the severe plastic deformation and cooling rate. The peak temperature was proportional to the rotation speed. The higher the rotation speed, the higher the peak temperature. The cooling rate was determined by the welding speed. The higher the welding speed, the higher cooling rate and thus, the effect of plastic deformation was not obvious. When the rotation speed kept at the level of 400 r/min, the microstructure evolution was from mixed microstructure of martensite/ferrite/retained austenite and finally evolved into martensite with the welding speed from 50 mm/min to 400 mm/min. The grain size was coarsened correspondingly. When the welding speed was 100 mm/min, the microstructure evolution sequence was changed from martensite/ferrite/retained austesite to matensite, then changed into martensite/bainite. And the grain size was fined correspondingly.
  • 图  1   焊接过程示意图和搅拌头示意图

    Figure  1.   The schematic presentation of welding process and stir tool. (a) welding process; (b) stir tool

    图  2   取样示意图(mm)

    Figure  2.   The schematic presentation of samples

    图  3   Q&P980钢搅拌摩擦焊接接头宏观形貌

    Figure  3.   The macro morphology of FSWed Q&P980 steel joints

    图  4   焊接接头弧纹特征

    Figure  4.   Arc pattern characteristics of welded joints

    图  5   不同旋转速度下Q&P980钢FSW接头焊核区中心的微观组织

    Figure  5.   The microstructures of Q&P980 steel and weld nugget under different rotation speed. (a) BM; (b) 200 r/min; (c) 300 r/min; (d) 400 r/min; (e) 600 r/min

    图  6   不同旋转速度下Q&P980钢FSW接头焊核区微观组织的IPF图

    Figure  6.   The IPF images of nugget zone of FSWed Q&P980 steel joints under different rotation speed. (a) BM; (b) 200 r/min; (c) 300 r/min; (d) 400 r/min; (e) 600 r/min

    图  7   不同旋转速度下Q&P980钢FSW接头焊核区微观组织的KAM图

    Figure  7.   The KAM images of nugget zone of FSWed Q&P980 steel joints under different rotation speed. (a) BM; (b) 200 r/min; (c) 300 r/min; (d) 400 r/min; (e) 600 r/min

    图  8   不同旋转速度下焊核区的X射线衍射图谱

    Figure  8.   XRD of weld nugget at different rotation speed

    图  9   不同焊接速度下接头焊核区中心的微观组织

    Figure  9.   The microstructures of weld nugget of Q&P980 steel under different welding speed. (a) 50 mm/min; (b) 100 mm/min; (c) 200 mm/min; (d) 300 mm/min; (e) 400 mm/min

    图  10   不同焊接速度下Q&P980钢FSW接头焊核区微观组织的IPF图

    Figure  10.   The IPF of weld nugget of Q&P980 steel under different rotation speed. (a) 50 mm/min; (b) 100 mm/min; (c) 200 mm/min; (d) 400 mm/min

    图  11   不同焊接速度下Q&P980钢FSW接头焊核区微观组织的KAM图

    Figure  11.   The KAM of weld nugget of Q&P980 steel under different rotation speed. (a) 50 mm/min; (b) 100 mm/min; (c) 200 mm/min; (d) 400 mm/min

    图  12   不同焊接速度下焊核区的X射线衍射图谱

    Figure  12.   The XRD of weld nugget at different rotation speed

    表  1   Q&P980钢的主要化学成分(质量分数,%)

    Table  1   The composition of Q&P980 steel

    CSiMnPSCrNiFe
    0.231.432.050.0160.004 50.0450.017余量
    下载: 导出CSV
  • [1]

    Wu Xiaoyan, Lin Hongtao, Wang Yisong, et al. Hydrogen embrittlement and fracture mechanism of friction stir welded quenching and partitioning 980 steel[J]. Materials Science & Engineering A, 2021(802): 140683.

    [2]

    Nanda T, Singh V, Singh V, et al. Third generation of advanced high strength steels: Processing routes and properties[J]. Proceedings of the Institution of Mechanical Engineers Part L-Journal of Materials S-Design and Applic, 2019, 233(2): 209 − 238.

    [3] 蔺宏涛, 孟强, 王怡嵩, 等. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(3): 6126 − 6130.

    Lin Hongtao, Meng Qiang, Wang Yisong, et al. Effect of rotation speed on the microstructure and mechanical properties of friction stir welding of joint high strength steel Q&P 980[J]. Materials Reports, 2020, 34(3): 6126 − 6130.

    [4] 蔺宏涛, 江海涛, 王怡嵩, 等. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(5): 1443 − 1447. doi: 10.11896/cldb.18040291

    Lin Hongtao, Jiang Haitao, Wang Yisong, et al. Microstructures and mechanical properties of joints of 6016-T4 aluminum alloy/Galvanied IF steel by friction stir welding[J]. Materials Reports, 2019, 33(5): 1443 − 1447. doi: 10.11896/cldb.18040291

    [5]

    Ghosh M, Kumar K, Mishra R S. Analysis of microstructural evolution during friction stir welding of ultrahigh strength steel[J]. Scripta Materialia, 2010, 63(8): 851 − 854. doi: 10.1016/j.scriptamat.2010.06.032

    [6]

    Kim Y G, Kim J S, Kim I J. Effect of process parameters on optimum welding condition of DP590 steel by friction stir welding[J]. Journal of Materials Science & Technology, 2014, 28(12): 5143 − 5148.

    [7]

    Da C P H C P, Braga L G V, Luciano B, et al. Effect of welding speed on friction stir welds of GL E36 shipbuilding steel[J]. Journal of Materials Research and Technology, 2019, 8(1): 1041 − 1051. doi: 10.1016/j.jmrt.2018.07.014

    [8] 薛鹏, 张星星, 吴利辉, 等. 搅拌摩擦焊接与加工研究进展[J]. 金属学报, 2016, 52(10): 1222 − 1238. doi: 10.11900/0412.1961.2016.00346

    Xue Peng, Zhang Xingxing, Wu Lihui, et al. Research progress on friction stir welding and processing[J]. Acta Metallurgica Sinica, 2016, 52(10): 1222 − 1238. doi: 10.11900/0412.1961.2016.00346

    [9]

    Meshram S D, Paradkar A G, Reddy G M, et al. Friction stir welding: An alternative to fusion welding for better stress corrosion cracking resistance of maraging steel[J]. Journal of Manufacturing Processes, 2017, 25(1.): 94 − 103.

    [10]

    Miles M P, Nelson T W, Steel R, et al. Effect of friction stir welding conditions on properties and microstructures of high strength automotive steel[J]. Science and Technology of Welding and Joining, 2013, 14(3): 228 − 232.

    [11]

    Sato Y S, Yamanoi H, Kokawa H, et al. Microstructural evolution of ultrahigh carbon steel during friction stir welding[J]. Scripta Materialia, 2007, 57(6): 557 − 560. doi: 10.1016/j.scriptamat.2007.04.050

    [12]

    Cui L, Fujii H, Tsuji N, et al. Friction stir welding of a high carbon steel[J]. Scripta Materialia, 2007, 56(7): 637 − 640. doi: 10.1016/j.scriptamat.2006.12.004

    [13]

    Khodir S A, Morisada Y, Ueji R, et al. Microstructures and mechanical properties evolution during friction stir welding of SK4 high carbon steel alloy[J]. Materials Science & Engineering A, 2012, 558: 572 − 578. doi: 10.1016/j.msea.2012.08.052

    [14]

    Nelson T W, Rose S A. Controlling hard zone formation in friction stir processed HSLA steel[J]. Journal of Materials Process and Technology, 2016, 231(3): 66 − 7.

    [15] 武晓燕, 罗巍, 王怡嵩, 等. 基于CEL模型的搅拌摩擦焊接7055铝合金仿真模拟[J]. 焊接学报, 2021, 42(7): 44 − 101.

    Wu Xiaoyan, Luo Wei, Wang Yisong, et al. Simulation on friction stir welding 7055 aluminum alloy based on CEL model[J]. Transactions of the China Welding Insititution, 2021, 42(7): 44 − 101.

    [16]

    Barnes S J, Bhatti A R, Steuwer A, et al. Friction stir welding in HSLA-65 steel: Part I. Influence of weld speed and tool material on microstructural development[J]. Materials Science and Engineering A, 43(7): 2342-2355.

    [17]

    Hodgson P D, Hickson M R, Gibbs R K. Ultrafine ferrite in low carbon steel[J]. Scripta Materialia, 1999, 40(10): 1179 − 1184. doi: 10.1016/S1359-6462(98)00411-4

    [18]

    Hong S C, Lee K S. Influence of deformation induced ferrite transformation on grain refinement of dual phase steel[J]. Materials Science & Engineering A, 2002, 323(1): 148 − 159.

    [19]

    Arbegast W J. A flow-partitioned deformation zone model for defect formation during friction stir welding[J]. Scripta Materialia, 2008, 58(5): 372 − 376. doi: 10.1016/j.scriptamat.2007.10.031

    [20]

    Farrar R A, Zhang Z, Bannister S R, et al. The effect of prior austenite grain size on the transformation behaviour of C-Mn-Ni weld metal[J]. Journal of Materials Science, 1993, 28(5): 1385 − 1390. doi: 10.1007/BF01191982

    [21]

    Mishra R S, Ma Z Y. Friction stir welding and processing II[J]. Materials Science and Engineering R, 2005, 50(1): 1 − 78.

    [22]

    Xie G M, Cui H B, Luo Z A, et al. Effect of rotation rate on microstructure and mechanical properties of friction stir spot welded DP780 steel[J]. Journal of Materials Science & Technology, 2016, 32(4): 326 − 332.

    [23]

    Imam M, Ueji R, Fujii H. Microstructural control and mechanical properties in friction stir welding of medium carbon low alloy S45C steel[J]. Materials Science & Engineering A, 2015, 636: 24 − 34. doi: 10.1016/j.msea.2015.03.089

    [24]

    Xie G M, Cui H B, Luo Z A, et al. Effect of rotation rate on microstructure and mechanical properties of friction stir spot welded DP780 steel[J]. Journal of Materials Science and Technology, 2016, 32(4): 326 − 332.

    [25]

    Hong S C, Lee K S. Influence of deformation induced ferrite transformation on grain refinement of dual phase steel[J]. Materials Science and Engineering A, 2002, 323(1): 148 − 159.

图(12)  /  表(1)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  37
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-12
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回