高级检索

高气压环境等离子弧行为与工艺研究

Study on behavior and process of plasma arc in high pressure environment

  • 摘要: 等离子弧切割技术因其高效稳定的工艺优势被广泛应用于工业领域. 文中以空气等离子弧为研究对象,通过COMSOL Multiphysics软件建立了喷嘴结构的二维轴对称有限元数学模型,并对电弧磁流体模型进行了优化. 基于磁流体动力学和电弧等离子体理论,选用等离子平衡放电多物理场接口,并确立了空气等离子电弧模型的控制方程和边界条件,实现对电弧模型的编译求解. 仿真结果表明,在引弧电流一致的条件下,随着环境压力的增加,电弧在温度分布和速度分布上均呈现收缩的态势. 基于3 MPa 高压焊接试验舱,搭建了高压环境等离子弧切割实验系统,通过对气路和非高频引弧电路的优化设计,实现了环境压力为0.1 ~ 0.7 MPa的稳定起弧. 并基于此开展了高压梯度下的等离子弧切割实验,并结合切割质量指标研究了环境压力对等离子弧电离行为的影响.

     

    Abstract: Plasma arc cutting technology is widely used in industrial fields because of its efficient and stable process advantages. Taking the air plasma arc as the research object, this paper establishes a two-dimensional axisymmetric finite element mathematical model of the nozzle structure through COMSOL multiphysics software, and optimizes the arc magnetic fluid model. Based on magnetohydrodynamics and arc plasma theory, the multi physical field interface of plasma equilibrium discharge is selected, and the control equations and boundary conditions of air plasma arc model are established to realize the compilation and solution of the arc model. The simulation results show that under the condition of consistent arc starting current, the arc shrinks in temperature distribution and velocity distribution with the increase of ambient pressure. Based on the 3 MPa high-pressure welding test chamber, an experimental system of plasma arc cutting in high-pressure environment is built. Through the optimization design of gas circuit and non high-frequency arc starting circuit, the stable arc starting with environmental pressure of 0.1 ~ 0.7 MPa is realized. Based on this, plasma arc cutting experiments under high pressure gradient were carried out, and the influence of environmental pressure on plasma arc ionization behavior was studied combined with cutting quality index.

     

/

返回文章
返回