Aluminum alloy friction stir additive manufacturing technique with continuous feedstocks
-
摘要: 为解决固相增材制造过程送料不连续及层间界面弱连接的难题,提出了连续进给搅拌摩擦增材制造的方法,设计了一个带孔的储料腔和一个可对丝材进行热塑化并连续挤压的螺杆拓扑结构搅拌头. 结果表明,Al-Si合金丝材经由送丝孔进入储料腔,搅拌头连续热塑化并向下挤压材料,搅拌针在堆积层间的搅拌作用有效地提高了堆积层间的界面结合能力,成功实现了铝合金连续进给搅拌摩擦增材制造成形并解决了层间界面弱连接的难题. 单层增材制造堆积层厚度平均为1.2 mm,Al-Si合金增材制造成形件沿堆积方向的抗拉强度和断后伸长率分别为207.1 MPa ± 3.2 MPa和19.6 % ± 5.3%,该技术为实现大型铝合金构件全固相增材制造提供了一种可行性方案.Abstract: In order to solve the inherent issues of discontinuous feedstocks and kiss bonding in the solid-state additive manufacturing process, a novel friction stir additive manufacturing with continuous feedstocks was proposed. The applied tools including a storage cavity with a feeding hole and a screw topology which can thermo-plasticize and continuously extrude the Al-Si alloy wire were designed. The results showed that the Al-Si alloy wire was conveyed to the feeding hole into the storage cavity, and the pin continuously thermo-plasticized and extruded downward Al-Si alloy materials. The probes at the bottom of the pin were used to stir and process the thermo-plasticized materials, which can extremely improve the bonding efficiency of the interfaces. The friction stir additive manufacturing with continuous feeding aluminum alloy wires was successfully realized, and the inherent issue of kiss bonding of interfaces between layers was solved. The thickness of the individual layer was about 1.2 mm. The tensile strength and elongation of the Al-Si alloy formed part along the stacking direction have little differences, which were 207.1 ± 3.2 MPa and 19.6 ± 5.3%, respectively. Friction stir additive manufacturing with continuous feedstocks can provide a feasible process method towards full solid-state additive manufacturing of large aluminum alloy parts.
-
0. 序言
2系铝锂合金在航空航天领域的广泛应用对其焊接可靠性提出了更高的要求[1-2]. 针对铝锂合金焊接存在的气孔、裂纹、拉伸性能低等缺陷,各国学者展开了大量的试验研究. Dittrich等人[3]研究了2系铝锂合金的焊接性,发现铝锂合金在焊后气孔缺陷明显;林凯莉等人[4]以2198铝锂合金为材料开展激光填丝焊试验,发现填充Al-Si焊丝对焊缝裂纹的愈合有较好效果;Lukin等人[5]发现稀有元素钪的引入可对铝锂合金的焊接缺陷有抑制作用;安娜等人[6]提出电流辅助激光填丝焊接铝锂合金,研究表明较无辅助电流相比,电流的引入可以有助于提高焊接接头抗拉强度,抗拉强度可达母材64%.
目前铝锂合金焊接研究主要集中于通过调整焊接工艺参数而提高焊接质量,或改变熔入的焊丝,以调控焊缝熔池中元素的烧损并抑制焊接缺陷的产生. 搅拌摩擦焊虽然可以取得较好的焊接质量,但其焊接效率太低且焊接过程中需要严格控制焊接速度[7-8]. 激光以其焊接效率高、热输入小、焊后变形小的优点被认为是金属焊接最优的热源[9-10],但根据现有研究可知,激光应用于铝锂合金的焊接仍存在着焊接质量问题,而且气孔作为铝锂合金焊接的主要缺陷. 在铝锂合金激光填丝焊中,少有学者对气孔抑制作深入研究,且铝锂合金焊接接头抗拉强度低的缺陷尚未解决. 故以2060铝锂合金为焊接材料开展了扫描填丝焊接工艺研究,以抑制焊接缺陷,实现铝锂合金高质量焊接.
1. 试验方法
1.1 试验材料及焊接平台
试验采用的2060铝锂合金试件尺寸为150 mm × 50 mm × 2 mm,抗拉强度500 MPa,断后伸长率13.0%. 试验选用的填充材料为ER4047铝硅焊丝,焊丝硅含量12%,规格ϕ1.2 mm,基材和焊丝的化学成分如表1所示. 试验前采用丙酮去除试件表面油污,干燥后利用电刷去除表面氧化膜,然后用无水乙醇进行清洗.
表 1 2060铝锂合金和ER4047焊丝的化学成分(质量分数, %)Table 1. Chemical compositions of 2060 aluminum lithium alloy and ER4047 wire材料 Li Mg Zn Mn Ag Zr Si Fe Cu Al 2060 0.75 0.85 0.42 0.30 0.30 0.11 0.05 0.1 — 余量 ER4047 — 0.1 0.30 0.11 — — 12 0.08 0.30 余量 试验采用YLS-8000型光纤激光器、D50型激光扫描焊接头,激光器最大输出功率为8 kW,焊接机器人为KR60HA六轴机器人. 送丝装置为福尼斯送丝系统,焊接过程中采用前置送丝方式,焊丝与激光光束间距设定为2 mm. 采用Fastcam-SA4型高速相机对焊接过程中的熔池进行拍摄. 焊接过程正面采用同轴吹气保护,气体流量为15 L/min;背部采用吹气保护,气体流量为10 L/min,保护气体为高纯氩气. 焊接完成后,利用XYD-225 型X射线实时成像检测系统对焊缝进行气孔探测,利用计算机辅助软件Image-Pro Plus对焊缝的气孔率进行测算;根据GB/T 2651—2008《焊接接头拉伸试验方法》将焊件制成标准的拉伸试件,利用电子万能拉伸试验机对母材及试件进行抗拉强度测试.
1.2 试验原理及方案
扫描焊接工艺示意图如图1所示,扫描焊接头的工作原理如图2所示. 试验选用的扫描轨迹为“∞”形. 激光扫描焊中,激光光束经准直照射至偏振镜片,通过两个正交方向的振镜电机带动光束偏转器的偏转实现光束轨迹成形,并在一定范围内快速移动,从而实现“∞”形扫描轨迹,如图3所示.当焊接速度v = 0时,激光束的扫描轨迹如图3a所示,以a点作为一个焊接周期的起始点,激光束以某一固定的扫描速度ve沿着路径a-b-c-d-e(a)-f-g-h-i(a)不断的做循环运动,其中扫描速度v
e主要由扫描频率f和扫描幅度A决定. 当焊接速度v大于0时,激光束做连续扫描运动,轨迹图如图3b所示,激光束从m点出发,经过多次运动后在n点结束焊接过程. 动态扫描时实际焊接速度 $\overrightarrow {{v_{\rm{a}}}} $ 为扫描速度$\overrightarrow {{v_{\rm{e}}}} $ 与沿焊缝焊接速度$\overrightarrow v $ 的矢量速度之和,即$$\overrightarrow {{v_{\rm{a}}}} = \overrightarrow {{v_{\rm{e}}}} + \overrightarrow v $$ (1) 为了探究扫描参数对焊缝气孔形成的抑制作用规律,采用单因素变量法,分别改变扫描幅度(固定扫描频率150 Hz)与扫描频率(固定扫描幅度1.2 mm)来观测焊缝中气孔分布并计算出焊缝气孔率. 工艺参数设置如表2所示.
表 2 单因素试验工艺参数Table 2. Single factor experiment process parameters激光功率P/W 离焦量Δf/mm 焊接速度v/(m·min−1) 送丝速度vf/(m·min−1) 扫描幅度A/mm 扫描频率f/Hz 3 400 −1 3.2 3.2 0,0.4,0.8,1.2,1.6,2.0 0,50,100,150,200,250 为探究扫描填丝焊接工艺参数对焊接接头抗拉强度的影响规律,设计曲面响应方案(方案设计中为了保证送丝均匀,使焊接速度和送丝速度相等)选择焊接功率、焊接/送丝速度、扫描幅度、扫描频率4个因素开展试验. 试验参数设置如表3所示.
表 3 曲面响应试验参数Table 3. Response surface test parameters因素 激光功率P/W 焊接/送丝速度v/(m·min−1) 扫描幅度A/mm 扫描频率
f/HzA B C D 低水平 3 100 3 0.8 50 高水平 3 900 5 1.6 150 2. 分析与讨论
2.1 激光扫描填丝焊接熔池行为分析
2.1.1 激光扫描填丝焊接熔池动态流动行为
图4为“∞”形激光扫描填丝焊接工艺下高速相机拍摄的熔池动态演变过程,熔池动态变化呈明显周期性. 即以一个“∞”形光束轨迹为运动周期,在此周期中熔池流动行为因光束轨迹所在位置不同而有所差异,会出现不同程度的小孔喷发现象.
以“∞”形扫描轨迹中a点作为焊接起始点,对应为t = 0时刻,此刻激光光束作用于材料表面形成熔池,并伴随小孔生成,如图4a所示. 随后激光沿着焊接方向直线运动,激光光束相对激光头沿着扫描轨迹ab段运行. 焊丝与光束初始距离设置为2 mm,即此时光丝属于完全分离状态,焊丝的热量吸收来源为熔池热辐射及热传导、金属蒸汽与等离子体热辐射,使得焊丝受热熔化铺展地流入熔池前端;由于此时小孔运动方向与熔池流动方向相反,故小孔处于不稳定状态,在金属蒸汽能量聚集后会产生喷发现象,但喷发幅度较小,仅有少许金属液滴在喷发中被剥离熔池形成飞溅. 随后,激光光束沿着bcd段运动并逐渐向焊丝靠近,当t = 3.0 ms时,光束到达bcd中段,激光光束在熔化金属形成小孔的同时也在直接照射并熔化焊丝,焊丝熔化成液滴落入熔池,对小孔产生冲击作用,导致小孔发生一次较为强烈的喷发,并伴随金属液滴向熔池后沿散开形成飞溅,如图4b所示. 光束越过中段后小孔运动方向将与熔池流动同向,小孔与熔池渐趋于稳定状态. 当t = 4.4 ms时,激光光束到达d点,如图4c所示. 之后光束开始沿着def段运动并对熔池进行二次加热,此过程中,光束与焊丝再次处于分离状态,熔池与小孔呈现较为稳定的状态. 但由于金属蒸汽作用,熔池中小孔仍存在小幅度喷发现象,造成熔池微小幅度波动,由金属蒸汽喷发剪切出熔池的液滴会在重力作用下回到熔池,故几乎不产生飞溅.
在t = 6.8 ms时,即激光接近“∞”形轨迹的拐点f,小孔喷发强度较之前有所提升,孔内聚集的金属蒸汽在小孔不稳定的拐点处发生喷发,蒸汽与熔池的剪切作用使得小孔周围熔融金属隆起,小孔喷发中心有小液柱脱离熔池,部分液滴被剥离形成飞溅,随后大部分液柱在重力作用下重新落回熔池,如图4d所示. 此次喷发导致的反冲压力加速熔池中液态金属向后沿运动,造成熔池表面涟漪出现大幅度波动. 随后在t = 8.6 ms时,光束到达h点附近,熔池再次发生较大的波动,如图4f所示. 之后熔池趋于逐渐稳定状态,运动至初始点a并开始下一个周期的循环. 该焊接情况下熔池动态变化周期为9.6 ms,在一个扫描焊接周期中,会产生周期性小孔喷发现象;熔池与小孔行为较为稳定,仅在部分轨迹拐点喷发强度较高,且周期内产生飞溅较少.
2.1.2 激光扫描填丝与激光单道填丝焊接熔池对比
为获取激光扫描填丝及激光单道填丝焊接下的熔池尺寸,选取高速相机在熔池较稳定状态下每间隔1 ms拍摄的3幅图,并对3幅图中熔池长度求取平均值以代表焊接过程中熔池长度;选取冷却成形后的焊缝测量其焊缝宽以代表熔池宽度. 图5为不同焊接工艺熔池静态形貌. 图5a为激光单道填丝焊接熔池静态形貌(P = 3 500 W,v = vf = 3.2 m/min,Δf = 0,此参数下焊接熔池较大,成形质量相对较好,具有代表性),测得熔池长度4.32 mm,宽度2.60 mm;图5b为“∞”形激光扫描焊接下熔池静态形貌(参数同上,A = 1.2 mm,f = 150 Hz),测得熔池长度9.16 mm,宽度3.21 mm(白色圈出部分即为熔池). “∞”形扫描填丝焊接熔池相比激光单道填丝焊接长度增加了115%,宽度增加了23.5%.
熔池长度增加意味着熔池冷却时间得以延长,通过推算获得激光扫描填丝及激光单道填丝焊接工艺下,熔池冷却时间分别为120.2,56.4 ms (选取焊缝上3点,记录此3点处金属从初始被激光熔化到开始冷却凝固时间,对3个记录的时间求取平均值,代表熔池冷却时间),即激光扫描填丝焊接条件下熔池冷却时间是激光单道填丝焊接的2.13倍.
2.2 激光扫描填丝焊接工艺对气孔的影响分析
2.2.1 激光扫描填丝焊接参数对气孔的影响规律
焊缝气孔率与焊接参数关系如图6所示,焊缝气孔率随着扫描幅度/扫描频率的增大呈现明显降低趋势. 图7为不同焊接工艺焊缝气孔分布. 当扫描幅度/扫描频率为0时,即为激光单道填丝焊接,焊缝X射线透视如图7a所示,此时焊缝中分布着形状较不规则的气孔,焊缝气孔率高至3.12%. 当扫描幅度增大至0.8 mm时焊缝中无明显气孔出现,气孔率低至0.13%,幅度继续增大焊缝气孔率可维持低于0.1%的状态,如图6a所示;当扫描频率增大至50 Hz,焊缝中无明显气孔出现,气孔率低至0.58%,如图6b所示,随着扫描频率的进一步增大,焊接过程中气孔完全被抑制,焊缝成形良好.
相对于扫描幅度对于焊接气孔的影响,扫描频率增大对于焊缝气孔的抑制作用更加明显,但扫描幅度和扫描频率不可持续增大,因为较大的扫描幅度和频率会导致激光热输入降低从而使板材无法焊透. 由此可知,当扫描幅度处在0.8 ~ 1.6 mm、扫描频率在50 ~ 150 Hz之间时焊缝中气孔可以明显被抑制,可得到如图7b所示的优质焊缝.
2.2.2 激光扫描填丝焊接工艺气孔抑制机理
根据Katayam提出的理论,如图8所示[11],在正常焊接速度下,铝锂合金激光焊接过程中小孔前沿壁面及后沿壁面由于受到蒸汽反冲压力及熔池流动的影响而出现不稳定的状态,小孔开口处会形成等离子云阻碍激光能量辐射进小孔内部,同时由于小孔前沿壁面液体台阶的存在使得小孔在后沿壁面的末端不断形成气泡,气泡进入熔池不能及时溢出,即留在焊缝中凝固成气孔,形成焊缝气孔缺陷[12-15]. 激光填丝焊接时,焊丝的引入会使得小孔前沿熔融金属体积增大,造成对小孔前沿壁面冲击增大,使得小孔前沿壁面产生更大凸起台阶. 在激光能量作用下,台阶表面液态金属喷发从而加剧小孔不稳定现象,且铝锂合金薄板激光填丝焊接属于激光熔透焊接,因此极易出现因小孔不稳定喷发造成的焊缝气孔缺陷.
“∞”形激光扫描填丝焊接工艺下,激光做高速扫描运动,当小孔前沿金属开始熔化并向熔池后方流动时,小孔已转向后方运动,故由焊丝引入造成的熔融金属体积增大对于小孔的冲击作用减小,从而使小孔侧壁凸起幅度减小,小孔喷发强度减弱. 随后当激光光束转向熔池后方对熔池进行二次加热时,由熔融金属冲击造成的液体台阶在小孔高速移动下将不再存在,此时小孔上部的侧壁部分将在激光作用下产生局部蒸汽喷发,喷发方向朝向小孔开口处,并在开口处中心位置形成小范围等离子云,该等离子云不会对激光入射小孔造成大的影响,即激光能量仍可以维持小孔稳定存在,从而抑制了由小孔不稳定喷发造成的气孔产生.
由激光扫描填丝焊接熔池流动行为分析知,扫描幅度和扫描频率的适度增大可以有效地增大焊接熔池长度和宽度,同时延长熔池冷却时间. 试验在激光扫描填丝焊接下熔池的冷却时间是激光单道填丝焊接的2.13倍,故相对于激光单道填丝焊接工艺,激光扫描填丝焊接可以为熔池中气泡溢出提供充足时间,从而有效抑制焊缝气孔的产生,验证了激光扫描填丝焊接工艺下焊缝气孔率远低于激光单道填丝焊接工艺.
2.3 焊接接头抗拉强度分析
按照表3设计参数试验,进行29组参数焊接试验并检测试件抗拉强度(Rm),随后将结果输入曲面响应模型,得到变量分析结果如表4所示 (回归值F为6.53,说明该模型具有显著性). 模型中P值小于0.05则表示该因素为显著影响因素,即D,BD,CD,A2,B2,D2均为显著影响项,其中扫描频率为主要单独影响因素,扫描频率与焊接/送丝速度、扫描幅度之间存在相互作用并对接头抗拉强度产生影响.
表 4 曲面响应变量分析Table 4. Variable analysis of response surface方差来源 平方和S 2 自由度df 均方E 回归值F P值 显著性 模型 79 969.66 14 5 712.12 6.53 0.000 6 显著 激光功率A 3 961.42 1 3 961.42 4.53 0.051 6 焊接速度/送丝速度B 1 571.17 1 1 571.17 1.80 0.201 6 扫描幅度C 1 149.93 1 1 149.93 1.31 0.270 9 扫描频率D 37 382.65 1 37 382.65 42.72 < 0.000 1 显著 AB 9.18 1 9.18 0.010 0.919 9 AC 2 039.43 1 2 039.43 2.33 0.149 1 AD 479.39 1 479.39 0.55 0.471 4 BC 90.44 1 90.44 0.10 0.752 6 BD 4 142.85 1 4 142.85 4.73 0.047 2 显著 CD 7 185.11 1 7 185.11 8.21 0.012 5 显著 A2 9 531.95 1 9 531.95 10.89 0.005 3 显著 B2 4 875.72 1 4 875.72 5.57 0.033 3 显著 C2 1 660.37 1 1 660.37 1.90 0.190 0 D2 14 900.79 1 14 900.79 17.03 0.001 0 显著 根据数据分析,系统给出抗拉强度和各参数之间的定量关系如下
$$\begin{aligned} {{\mathop{R}\nolimits} _{\rm{m}}}{\rm{ = }} &- {\rm{2\; 892}}{\rm{.327\;34 + 1}}{\rm{.532\;23}}P + 142.517\;08v + 6.834\;78f - 65.114\;58A{\kern 1pt} + 0.141\;13PA +\\ & 0.643\;65vf + 11.887\;5vA - 5.473\;75 \times {10^{ - 4}}Pf - 2.119\;13Af - 3.787\;5 \times {10^{ - {\rm{3}}}}Pv - \\ &2.395\;89 \times {10^{ - 4}}{P^2} \!- \!27.416\;67{v^2} - 99.994\;79{A^2}\! -\! 0.019\;172{f^2} \end{aligned}$$ (2) 依据此关系获得抗拉强度最大值化理论最优解,即功率3 227.142 W、焊接/送丝速度4.310 m/min、扫描幅度0.8 mm、扫描频率150 Hz,该理论最优解下抗拉强度为389 MPa. 以理论最优参数进行五组试验,得到焊接接头抗拉强度均值为382 MPa,即激光扫描填丝焊接最优参数组合下2060铝锂合金焊接接头抗拉强度可达母材的76.4%.
3. 结论
(1)相比激光单道填丝焊接,“∞”形激光扫描填丝焊接可以缓释焊丝熔入对熔池冲击作用,熔池流动平稳且呈现周期性变化.
(2)“∞”形激光扫描填丝焊接可有效抑制因小孔不稳定喷发造成的焊缝气孔产生;当扫描幅度在0.8 ~ 1.6 mm、扫描频率在50 ~ 150 Hz之间时焊缝中气孔可被明显抑制.
(3)“∞”形激光扫描填丝焊接中能够提升焊接接头抗拉强度,最优参数下接头抗拉强度可达母材76.4%,扫描频率为接头抗拉强度主要影响因素,为焊接工艺参数选择提供了参考.
-
图 6 增材制造样件横截面及特征区域层间界面形貌与微观组织形貌
Figure 6. The cross-section of the additive manufacturing specimen and its interfacial morphology and microstructures from the featured areas. (a) additive morphology; (b) interface A; (c) interface B; (d) interface C; (e) top section; (f) middle section; (g) bottom section
表 1 Al-Si合金和6061-T4板材化学成分 (质量分数,%)
Table 1 Chemical compositions of Al-Si alloy and 6061-T4 sheet
材料 Cu Mg Si Fe Mn Zn Ti Cr Al Al-Si 丝材 0.23 0.05 ~ 0.08 4.5 ~ 6.0 0.18 0.10 0.008 0.07 0.0001 余量 6061-T4板材 0.25 1.08 0.60 0.32 0.04 0.001 0.045 0.189 余量 -
[1] Liu Z, Zhao D, Wang P, et al. Additive manufacturing of metals: Microstructure evolution and multistage control[J]. Journal of Materials Science & Technology, 2022, 100: 224 − 236.
[2] Yang T, Liu T, Liao W, et al. The influence of process parameters on vertical surface roughness of the AlSi10Mg parts fabricated by selective laser melting[J]. Journal of Materials Processing Technology, 2019, 266: 26 − 36. doi: 10.1016/j.jmatprotec.2018.10.015
[3] Brice C, Shenoy R, Kral M, et al. Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing[J]. Materials Science and Engineering A, 2015, 648: 9 − 14. doi: 10.1016/j.msea.2015.08.088
[4] 何鹏, 柏兴旺, 周祥曼, 等. MIG电弧增材制造6061铝合金的组织和性能[J]. 焊接学报, 2021, 43(2): 50 − 54, 60. He Peng, Bai Xingwang, Zhou Xiangman, et al. Microstructure and properties of 6061 aluminum alloy by MIG wire and arc additive manufacturing[J]. Transactions of The China Welding Institution, 2021, 43(2): 50 − 54, 60.
[5] 王帅, 付立铭, 袁勇, 等. NiFe 基合金激光增材制造热裂纹形成机理及调控[J]. 焊接学报, 2022, 43(5): 8 − 13. Wang Shuai, Fu Liming, Yuan Yong, et al. Mechanism and elimination of hot cracks in laser additive manufacturing of NiFe based superalloy[J]. Transactions of the China Welding Institution, 2022, 43(5): 8 − 13.
[6] 夏玉峰, 张雪, 廖海龙, 等. 电弧熔丝增材制造钛/铝复合材料的组织与性能[J]. 焊接学报, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001 Xia Yufeng, Zhang Xue, Liao Hailong, et al. Microstructure and properties of Ti/Al composites materials fabricated by wire and arc additive manufacturing[J]. Transactions of The China Welding Institution, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001
[7] Srivastava M, Rathee S, Maheshwari S, et al. A review on recent progress in solid state friction based metal additive manufacturing: friction stir additive techniques[J]. Critical Reviews in Solid State and Materials Sciences, 2019, 44(5): 345 − 377. doi: 10.1080/10408436.2018.1490250
[8] Meng X, Huang Y, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2021, 115: 100706. doi: 10.1016/j.pmatsci.2020.100706
[9] Zhu H, Dong S, Zhao Y, et al. Strength mismatch mechanism on friction stir welding joint of 7075 aluminum alloy[J]. China Welding, 2021, 30(1): 30 − 36.
[10] Bararpour S M, Jamshidi A H, Jamaati R. Effect of non-isothermal aging on microstructure and mechanical properties of friction surfaced AA5083-15wt%Zn composites[J]. Surface and Coatings Technology, 2020, 384: 125307. doi: 10.1016/j.surfcoat.2019.125307
[11] He C, Li Y, Zhang Z, et al. Investigation on microstructural evolution and property variation along building direction in friction stir additive manufactured Al–Zn–Mg alloy[J]. Materials Science and Engineering:A, 2020, 777: 139035. doi: 10.1016/j.msea.2020.139035
[12] Agrawal P, Haridas R S, Yadav S, et al. Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips[J]. Additive Manufacturing, 2021, 47: 102259. doi: 10.1016/j.addma.2021.102259
[13] Phillips B J, Mason C J T, Beck S C, et al. Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al-Mg-Si alloy fabricated by additive friction stir deposition[J]. Journal of Materials Processing Technology, 2021, 295: 117169. doi: 10.1016/j.jmatprotec.2021.117169
[14] Gotawala N, Kumar Mishra N, Shrivastava A. Solid-state depositions of multilayer SS304 by friction stir metal deposition[J]. Materials Letters, 2022, 314: 131881. doi: 10.1016/j.matlet.2022.131881
[15] Chen H, Chen J, Xu S, et al. Wire-based friction stir additive manufacturing toward field repairing[J]. Welding Journal, 2022, 101(9): 249s − 252s.
[16] 王立伟, 武子琴, 胡虎安, 等. 工艺参数对Al-Si合金CMT增材制造组织和力学性能的影响[J]. 沈阳大学学报, 2021, 33(1): 1 − 9. Wang Liwei, Wu Ziqin, Hu Hu’an, et al. Effects of process parameters on microstructure and mechanical properties of Al-Si alloy CMT additive manufacturing[J]. Journal of Shenyang University, 2021, 33(1): 1 − 9.
-
期刊类型引用(1)
1. 钟素娟,秦建,王蒙,崔大田,龙伟民. CuSn预合金粉芯复合银钎料的润湿铺展机理. 焊接学报. 2023(02): 16-21+129-130 . 本站查看
其他类型引用(1)