高级检索

热老化与热循环条件下Bi对Sn-1.0Ag-0.5Cu无铅焊点界面组织与性能的影响

杨蔚然, 季童童, 丁毓, 王凤江

杨蔚然, 季童童, 丁毓, 王凤江. 热老化与热循环条件下Bi对Sn-1.0Ag-0.5Cu无铅焊点界面组织与性能的影响[J]. 焊接学报, 2022, 43(11): 157-162. DOI: 10.12073/j.hjxb.20220709003
引用本文: 杨蔚然, 季童童, 丁毓, 王凤江. 热老化与热循环条件下Bi对Sn-1.0Ag-0.5Cu无铅焊点界面组织与性能的影响[J]. 焊接学报, 2022, 43(11): 157-162. DOI: 10.12073/j.hjxb.20220709003
YANG Weiran, JI Tongtong, DING Yu, WANG Fengjiang. Effect of Bi addition on interfacial microstructures and properties of Sn-1.0Ag-0.5Cu Pb-free solder joints during isothermal aging and thermal cycling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 157-162. DOI: 10.12073/j.hjxb.20220709003
Citation: YANG Weiran, JI Tongtong, DING Yu, WANG Fengjiang. Effect of Bi addition on interfacial microstructures and properties of Sn-1.0Ag-0.5Cu Pb-free solder joints during isothermal aging and thermal cycling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 157-162. DOI: 10.12073/j.hjxb.20220709003

热老化与热循环条件下Bi对Sn-1.0Ag-0.5Cu无铅焊点界面组织与性能的影响

基金项目: 国家自然科学基金面上基金资助项目(51875269)
详细信息
    作者简介:

    杨蔚然,硕士研究生;主要从事电子封装可靠性及材料研究工作;Email: 2286562373@qq. com

    通讯作者:

    王凤江,教授;Email: fjwang@just.edu.cn.

  • 中图分类号: TG 425.1

Effect of Bi addition on interfacial microstructures and properties of Sn-1.0Ag-0.5Cu Pb-free solder joints during isothermal aging and thermal cycling

  • 摘要: 研究了在热老化和热循环过程中Bi的添加对低银无铅钎料Sn-1.0Ag-0.5Cu (SAC105)的BGA焊点界面微观组织演变的影响,分析了Bi的添加对SAC105微焊点热老化与热循环剪切性能的影响. 结果表明,Bi元素添加量为2%(质量分数)时,对热循环过程中微焊点界面处金属间化合物(IMC)层整体厚度的增加起到抑制作用,同时阻碍了热循环过程中因焊点热失配导致的IMC层破碎. 但是Bi的添加促进了界面IMC层中Cu3Sn层的生长,因此在经过20天以上热老化处理后SAC105-2Bi微焊点界面IMC层厚度与SAC105微焊点接近. 此外,Bi的添加可以显著提升热循环处理后SAC105微焊点的抗剪切能力. SAC105-2Bi微焊点的剪切力学性能受到热循环处理的影响较小. 与SAC105微焊点相比,SAC105-2Bi微焊点的断裂模式更早地从韧性断裂向脆性断裂转变,因此Bi的添加降低了SAC105微焊点的热循环可靠性.
    Abstract: Effect of Bi addition into Sn-1.0Ag-0.5Cu (SAC105) Pb-free solder on the interfacial microstructural evolution in BGA solder joints was studied, and the shear properties of solder joints during isothermal aging and thermal cycling were analyzed The results showed that 2wt.% Bi addition into SAC105 depressed the growth intermetallic compound (IMC) thickness at the interface of solder joints during thermal cycling, and also depressed the breaking of interfacial IMC layer caused by thermal mismatch of solder joints during the thermal cycle. However, Bi addition can also increase the shear strength of SAC105 solder joints during thermal cycling or isothermal aging, while the effect of thermal cycling treatment on shear properties on SAC105-2Bi solder joints is little. Compared with SAC105 solder joints, Bi addition changed the failure mode from ductile to brittle mode of SAC105-2Bi solder joints during thermal conditions. Therefore, Bi addition decreased the thermal cycling reliability of SAC105 solder joints.
  • 图  1   SAC105-2Bi微焊点经过不同老化时间以及不同热循环周期后的界面显微组织

    Figure  1.   Microstructure of SAC105-2Bi BGA joint after aging and thermal cycles. (a) after reflow; (b) aging for 10 days; (c) aging for 20 days; (d) aging for 40 days; (e) thermal cycling for 500 times; (f) thermal cycling for 1 000 times; (g) thermal cycling for 1 500 times; (h) thermal cycling for 2 000 times

    图  2   SAC105-2Bi微焊点在不同老化时间以及不同热循环周期后的界面IMC厚度

    Figure  2.   IMC thickness of SAC105-2Bi BGA joint after aging and thermal cycles. (a) the thickness of interfacial IMC layer after aging; (b) the thickness of interfacial IMC layer after thermal cycles

    图  3   SAC105和SAC105-2Bi微焊点在不同老化时间以及不同热循环周期后的界面Cu6Sn5和Cu3Sn厚度

    Figure  3.   Thickness of Cu6Sn5 and Cu3Sn layer of SAC105 and SAC105-2Bi BGA joint after aging and thermal cycles. (a) the thickness of interfacial IMC layer after aging; (b) the thickness of interfacial IMC layer after thermal cycles

    图  4   SAC105和 SAC105-2Bi微焊点在不同老化时间以及不同热循环周期后的剪切力峰值

    Figure  4.   The peak shear forces of SAC105 and SAC105-2Bi BGA joints after aging and thermal cycles. (a) peak shear force of solder joints after aging; (b) peak shear force of solder joints after thermal cycles

    图  5   SAC105和 SAC105-2Bi微焊点经过不同周期热循环处理后的剪切断口微观组织

    Figure  5.   Fracture surface of SAC105 and SAC105-2Bi shear test under different thermal cycles. (a) SAC105 thermal cycling for 500 times; (b) SAC105 thermal cycling for 1 000 times; (c) SAC105 thermal cycling for 1 500 times; (d) SAC105 thermal cycling for 2 000 times; (e) SAC105-2Bi thermal cycling for 500 times; (f) SAC105-2Bi thermal cycling for 1 000 times; (g) SAC105-2Bi thermal cycling for 1 500 times; (h) SAC105-2Bi thermal cycling for 2 000 times

  • [1]

    Terashima S, Kariya Y, Hosoi T, et al. Effect of silver content on thermal fatigue life of Sn-xAg-0.5Cu flip-chip interconnects[J]. Journal of Electronic Materials, 2003, 32(12): 1527 − 1533. doi: 10.1007/s11664-003-0125-z

    [2]

    Shnawah A A, Said S, Sabri M, et al. Microstructure, mechanical, and thermal properties of the Sn-1Ag-0.5Cu solder alloy bearing Fe for electronics applications[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2012, 551: 160 − 168. doi: 10.1016/j.msea.2012.04.115

    [3]

    El-Daly A A, Fawzy A, Mansour S F, et al. Thermal analysis and mechanical properties of Sn-1.0Ag-0.5Cu solder alloy after modification with SiC nano-sized particles[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(8): 2976 − 2988. doi: 10.1007/s10854-013-1200-8

    [4]

    Qu J F , Xu J, Hu Q, et al. Modification of Sn-1.0Ag-0.5Cu solder using nickel and boron[J]. Rare Metals, 2015, 34(11): 783 − 788. doi: 10.1007/s12598-014-0221-7

    [5] 王丽凤, 孙凤莲, 刘晓晶, 等. Sn-Ag-Cu-Bi钎料合金设计与组织性能分析[J]. 焊接学报, 2008, 29(7): 9 − 12. doi: 10.3321/j.issn:0253-360X.2008.07.003

    Wang Lifeng, Sun Fenglian, Liu Xiaojing, et al. Design of Sn-Ag-Cu-Bi solder alloy and analysis on microstructure and properties[J]. Transactions of the China Welding Institution, 2008, 29(7): 9 − 12. doi: 10.3321/j.issn:0253-360X.2008.07.003

    [6]

    Wen Y N, Zhao X C, Chen Z, et al. Reliability enhancement of Sn-1.0Ag-0.5Cu nano-composite solders by adding multiple sizes of TiO2 nanoparticles[J]. Journal of Alloys and Compounds, 2017, 696: 799 − 807. doi: 10.1016/j.jallcom.2016.12.037

    [7]

    Shnawah A A, Sabri M F M, Badruddin I A, et al. The bulk alloy microstructure and mechanical properties of Sn-1Ag-0.5Cu-xAl solders (x=0, 0.1 and 0.2 wt. %)[J]. Journal of Materials Science Materials in Electronics, 2012, 23(11): 1988 − 1997. doi: 10.1007/s10854-012-0692-y

    [8]

    Cheng H K, Huang C W, Lee H, et al. Interfacial reactions between Cu and SnAgCu solder doped with minor Ni[J]. Journal of Alloys and Compounds, 2015, 622: 529 − 534. doi: 10.1016/j.jallcom.2014.10.121

    [9]

    Leong Y M, Haseeb A. Soldering characteristics and mechanical properties of Sn-1.0Ag-0.5Cu solder with minor aluminum addition[J]. Materials, 2016, 9(7): 522. doi: 10.3390/ma9070522

    [10] 吴洁, 薛松柏, 于志浩, 等. Nd对Sn-3.8Ag-0.7Cu/Cu焊点高温可靠性的影响[J]. 焊接学报, 2021, 42(7): 9 − 13. doi: 10.12073/j.hjxb.20201211002

    Wu Jie, Xue Songbai, Yu Zhihao, et al. Effect of Nd on the high temperature reliability of Sn-3.8Ag-0.7Cu/Cu solder joint[J]. Transactions of the China Welding Institution, 2021, 42(7): 9 − 13. doi: 10.12073/j.hjxb.20201211002

    [11] 梁伟良, 薛鹏, 何鹏, 等. 超低银SAC钎料焊点界面显微组织演化[J]. 焊接学报, 2018, 39(11): 39 − 42. doi: 10.12073/j.hjxb.2018390269

    Liang Weiliang, Xue Peng, He Peng, et al. Microstructures evolution of low silver SnAgCu solder joint[J]. Transactions of the China Welding Institution, 2018, 39(11): 39 − 42. doi: 10.12073/j.hjxb.2018390269

    [12]

    Leong Y M, Haseeb A, Nishikawa H, et al. Microstructure and mechanical properties of Sn-1.0Ag-0.5Cu solder with minor Zn additions[J]. Journal of Materials Science Materials in Electronics, 2019, 30(13): 11914 − 11922. doi: 10.1007/s10854-019-01532-5

    [13]

    Mandavifard M H, Sabri M, Said S M, et al. High stability and aging resistance Sn-1Ag-0.5Cu solder alloy by Fe and Bi minor alloying[J]. Microelectronic Engineering, 2019, 208: 29 − 38. doi: 10.1016/j.mee.2019.01.011

    [14] 孟涛, 杨莉. Bi元素对SAC305钎料合金组织和性能的影响[J]. 热加工工艺, 2015, 44(7): 209 − 211. doi: 10.14158/j.cnki.1001-3814.2015.07.062

    Meng Tao, Yang Li. Effect of Bi element on microstructure and property of SAC305 solder alloy[J]. Hot Working Technology, 2015, 44(7): 209 − 211. doi: 10.14158/j.cnki.1001-3814.2015.07.062

    [15]

    Chen Y, Meng Z C, Gao L Y, et al. Effect of Bi addition on the shear strength and failure mechanism of low-Ag lead-free solder joints[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(2): 2172 − 2186. doi: 10.1007/s10854-020-04982-4

    [16]

    Waduge G D, Baty G, Lee Y, et al. Isothermal aging effect on Sn-58Bi solder interconnect mechanical shear stability[J]. Journal of Electronic Materials, 2022, 51(3): 1169 − 1179. doi: 10.1007/s11664-021-09379-5

    [17]

    Shang P J, Liu Z Q, Li D X, et al. Bi-induced voids at the Cu3Sn/Cu interface in eutectic SnBi/Cu solder joints[J]. Scripta Materialia, 2008, 58(5): 409 − 412. doi: 10.1016/j.scriptamat.2007.10.025

    [18]

    Liu C Z, Zhang W. Bismuth redistribution induced by intermetallic compound growth in SnBi/Cu microelectronic interconnect[J]. Journal of Materials Science, 2009, 44(1): 149 − 153. doi: 10.1007/s10853-008-3118-8

    [19]

    Kang T Y, Xiu Y Y, Liu C Z, et al. Bismuth segregation enhances intermetallic compound growth in SnBi/Cu microelectronic interconnect[J]. Journal of Alloys and Compounds, 2011, 509(5): 1785 − 1789. doi: 10.1016/j.jallcom.2010.10.040

  • 期刊类型引用(3)

    1. 潘睿志,林涛,李超,胡波. 基于深度学习的多尺寸汽车轮辋焊缝检测与定位系统研究. 光学精密工程. 2023(08): 1174-1187 . 百度学术
    2. 刘岩,刘澳,张琳琳,杜安娜,刘兆真,贺春林. DP590镀锌双相钢CMT焊接接头气孔及锌层研究. 机械工程学报. 2023(16): 213-222 . 百度学术
    3. 李文斌. 城市轨道交通车辆高强钢焊接用焊丝的选用方法. 焊接技术. 2022(03): 80-83 . 百度学术

    其他类型引用(1)

图(5)
计量
  • 文章访问数:  375
  • HTML全文浏览量:  76
  • PDF下载量:  59
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-07-08
  • 网络出版日期:  2022-11-06
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回