高级检索

BaCe0.7Zr0.1Y0.1Yb0.1O3-δ质子导电陶瓷与不锈钢的空气反应钎焊分析

司晓庆, 苏毅, 李淳, 亓钧雷, 曹健

司晓庆, 苏毅, 李淳, 亓钧雷, 曹健. BaCe0.7Zr0.1Y0.1Yb0.1O3-δ质子导电陶瓷与不锈钢的空气反应钎焊分析[J]. 焊接学报, 2022, 43(11): 8-14. DOI: 10.12073/j.hjxb.20220706003
引用本文: 司晓庆, 苏毅, 李淳, 亓钧雷, 曹健. BaCe0.7Zr0.1Y0.1Yb0.1O3-δ质子导电陶瓷与不锈钢的空气反应钎焊分析[J]. 焊接学报, 2022, 43(11): 8-14. DOI: 10.12073/j.hjxb.20220706003
SI Xiaoqing, SU Yi, LI Chun, QI Junlei, CAO Jian. Reactive air brazing of BaCe0.7Zr0.1Y0.1Yb0.1O3-δ proton conductive ceramic and stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 8-14. DOI: 10.12073/j.hjxb.20220706003
Citation: SI Xiaoqing, SU Yi, LI Chun, QI Junlei, CAO Jian. Reactive air brazing of BaCe0.7Zr0.1Y0.1Yb0.1O3-δ proton conductive ceramic and stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 8-14. DOI: 10.12073/j.hjxb.20220706003

BaCe0.7Zr0.1Y0.1Yb0.1O3-δ质子导电陶瓷与不锈钢的空气反应钎焊分析

基金项目: 国家自然科学基金杰出青年项目(52125502);国家自然科学基金青年项目(52005131);黑龙江省“头雁”团队经费资助项目(HITTY-20190013)
详细信息
    作者简介:

    司晓庆,博士,副研究员,硕士研究生导师;主要从事陶瓷、金属钎焊/扩散焊及固态能源器件封接. Email: sixq@hit.edu.cn

    通讯作者:

    曹健,博士,教授,博士研究生导师. Email: cao_jian@hit.edu.n.

  • 中图分类号: TG 454

Reactive air brazing of BaCe0.7Zr0.1Y0.1Yb0.1O3-δ proton conductive ceramic and stainless steel

  • 摘要: 针对质子陶瓷燃料电池堆中BaCe0.7Zr0.1Y0.1Yb0.1O3-δ (BCZYYb)质子导电陶瓷与Crofer22APU不锈钢的连接难题展开研究,探究了Ag-CuO钎料在BCZYYb陶瓷表面的润湿性能,分析了CuO与陶瓷反应对钎料润湿的驱动作用. 研究了Ag-CuO钎料的空气反应钎焊工艺,在1010 ℃/20 min工艺条件下实现了质子导电陶瓷与不锈钢的无缺陷连接,分析了接头两侧界面连接特性以及接头元素分布规律. 结果表明,CuO与陶瓷基体中BaO的反应促进了钎料润湿,钎料扩散进入陶瓷基体形成了较厚的渗透层,CuO与不锈钢保护层 (Mn, Co)3O4的反应促进了保护层致密化,保护层在连接过程对不锈钢基体起到了良好的保护作用. 系统分析了CuO含量对接头组织与性能的影响规律,采用Ag-CuO(2%,质量分数)钎料获得了最高接头剪切强度(21.6 MPa),综合评定了钎缝两侧界面反应对接头性能的影响.
    Abstract: In this study, the joining problem between the BaCe0.7Zr0.1Y0.1Yb0.1O3-δ (BCZYYb) ceramic and Crofer 22 APU stainless steel in the protonic ceramic fuel cell stack was studied. The wettability of Ag-CuO braze on the surface of BCZYYb ceramic was explored. And the driving effect of the reactions between CuO and ceramic matrix on braze wetting was analyzed. The reactive air brazing process of Ag-CuO braze was studied, and the BCZYYb ceramic was soundly brazed to the stainless steel at 1010 ℃ for 20 min. The interfacial joining properties on both sides and the element distribution of joints were analyzed. It is showed that the wetting of Ag-CuO braze was promoted by the reactions between the CuO and BaO in the ceramic matrix. The braze could diffuse into the ceramic matrix, forming a thick fusion layer. The densification of the (Mn, Co)3O4 protective layer on the stainless steel could be densified by its reactions with the CuO from the braze, which played a key role in protecting the stainless steel from oxidization during reactive air brazing. Effects of CuO content on the microstructure and properties of joints were analyzed systematically. The highest shear strength of joints (21.6 MPa) was obtained by using Ag-2wt%CuO braze.
  • 图  1   接头剪切强度测试加载示意图

    Figure  1.   Schematic diagram of loading for shear strength test of joints

    图  2   BCZYYb质子导电陶瓷断口形貌及元素分布

    Figure  2.   Fracture morphology and EDS maps of BCZYYb protonic ceramic. (a) Fracture morphology; (b) Ba; (c) Ce; (d) Zr; (e) Y; (f) Yb; (g) O

    图  3   Ag-CuO钎料在BCZYYb陶瓷表面润湿性

    Figure  3.   Wettability of Ag-CuO braze on the surface of BCZYYb ceramic. (a) Ag; (b) Ag-CuO (1%); (c) Ag-CuO (2%); (d) Ag-CuO (4%)

    图  4   Ag-CuO钎料在BCZYYb陶瓷表面润湿过程示意

    Figure  4.   Schematic of the wetting processes of the Ag-CuO braze on the BCZYYb ceramic surface

    图  5   焊后接头微观形貌(低倍)

    Figure  5.   Microstructure of as-brazed joint in low magnification

    图  6   焊后接头微观组织形貌(高倍)

    Figure  6.   Microstructure of as-brazed joint in high magnification

    图  7   焊后接头元素面分析

    Figure  7.   Analysis of elemental surface scanning of as-brazed joint. (a) Ag; (b) Cu; (c) Mn; (d) Fe; (e) Cr; (f) Ba

    图  8   钎料成分对接头组织的影响

    Figure  8.   Effects of braze composition on the joint microstructure. (a) Ag; (b) Ag-CuO (1%); (c) Ag-CuO (4%); (d) Ag-CuO (8%)

    图  9   钎料成分对接头剪切强度的影响

    Figure  9.   Effect of braze composition on the shear strength of joints

    图  10   BCZYYb侧断口形貌及成分分析[Ag-CuO (4%)]

    Figure  10.   Fracture morphology from BCZYYb side [Ag-CuO4%]

    表  1   图6中各位置成分分析 (原子分数,%)

    Table  1   Chemical compositions of each point in Fig. 6

    位置FeCrMnCoAgCuBaCeOYb
    A72.322.50.70.93.6
    B11.436.03.35.90.842.6
    C1.00.522.022.37.247.0
    D3.84. 15. 845.241.1
    E5. 545. 748.8
    F95.12.62.3
    G2.255.742.1
    H7.624.317.549.21. 4
    I2.02.925.719.049.01.4
    下载: 导出CSV

    表  2   BCZYYb侧断口成分分析(原子分数, %)

    Table  2   Composition analysis from BCZYYb side

    BaCeZrYYbCuO
    23.717.32.62.82.47.843.4
    下载: 导出CSV
  • [1]

    Bian W J, Wang B M, Tang W, et al. Revitalizing interface in protonic ceramic cells by acid etch[J]. Nature, 2022, 604: 479 − 485.

    [2]

    Duan C, Tong J, Shang M. et al. Readily processed protonic ceramic fuel cells with high performance at low-temperatures[J]. Science, 2015, 349: 1321 − 1326. doi: 10.1126/science.aab3987

    [3]

    Duan C, Kee R J, Zhu H, et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cell[J]. Nature, 2018, 557: 217 − 222. doi: 10.1038/s41586-018-0082-6

    [4]

    Le L Q, Hernandez C H, Rodriguez M H, et al. Proton- conducting ceramic fuel cells: Scale up and stack integration[J]. Journal of Power Sources, 2021, 482: 228868. doi: 10.1016/j.jpowsour.2020.228868

    [5]

    Kaletsch A, Pfaff E M, Broeckmann C. Effect of aging on microstructure and mechanical strength of reactive air brazed BSCF/AISI 314-joints[J]. Advanced Engineering Materials, 2014, 16: 1430 − 1436. doi: 10.1002/adem.201400102

    [6]

    Fabbri E, Bi L, Pergolesi D, et al. Towards the next generation of solid oxide fuel cells operating below 600 ℃ with chemically stable proton-conducting electrolytes[J]. Advanced Materials, 2012, 24: 195 − 208. doi: 10.1002/adma.201103102

    [7]

    Lin C K, Lin T W, Wu S H, et al. Creep rupture of the joint between a glass-ceramic sealant and lanthanum strontium manganite-coated ferritic stainless steel interconnect for solid oxide fuel cells[J]. Journal of European Ceramic Society, 2018, 38(5): 2417 − 2429. doi: 10.1016/j.jeurceramsoc.2018.01.016

    [8]

    Chou Y S, Thomsen E C, Williams R T, et al. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: thermal cycle stability and chemical compatibility[J]. Journal of Power Sources, 2011, 196(5): 2709 − 2716. doi: 10.1016/j.jpowsour.2010.11.020

    [9]

    Kuhn B, Wetzel F J, Malzbender J, et al. Mechanical performance of reactive-air-brazed (RAB) ceramic/metal joints for solid oxide fuel cells at ambient temperature[J]. Journal of Power Sources, 2009, 193(1): 199 − 202. doi: 10.1016/j.jpowsour.2008.10.117

    [10] 司晓庆, 李淳, 郑庆伟, 等. Ag-CuO-Al2O3复合钎料空气反应钎焊SOFC及服役性能[J]. 焊接学报, 2020, 41(5): 1 − 6. doi: 10.12073/j.hjxb.20190907001

    Si Xiaoqing, Li Chun, Zheng Qingwei, et al. Reactive air brazing of SOFC using Ag-CuO-Al2O3 composite braze and the service performance study[J]. Transactions of the China Welding Institution, 2020, 41(5): 1 − 6. doi: 10.12073/j.hjxb.20190907001

    [11] 蒋文春, 张玉财, 关学伟. 平板式SOFC钎焊自适应密封热应力与变形分析[J]. 焊接学报, 2012, 33(11): 55 − 58.

    Jiang Wenchun, Zhang Yucai, Guan Xuewei. Thermal stress and deformation in bonded compliant seal design for planar SOFC[J]. Transactions of the China Welding Institution, 2012, 33(11): 55 − 58.

    [12]

    Zhou Q, Bieler T R, Nicholas J D, et al. Transient porous nickel interlayers for improved silver-based solid oxide fuel cell brazes[J]. Acta Materials, 2018, 148: 156 − 162. doi: 10.1016/j.actamat.2018.01.061

    [13]

    Cao J, Si X Q, Li W J, et al. Reactive air brazing of YSZ- electrolyte and Al2O3-substrate for gas sensor sealing: interfacial microstructure and mechanical properties[J]. International Journal of Hydrogen Energy, 2017, 42: 10683 − 10694. doi: 10.1016/j.ijhydene.2017.01.105

    [14]

    Wang X Y, Si X Q, Li C, et al. Joining the BaZr0.1Ce0.7Y0.1Yb0.1 O3-δ electrolyte to AISI 441 interconnect for protonic ceramic fuel cell applications: interfacial microstructure and long-term stability[J]. ACS Applied Energy Materials, 2021, 4: 7346 − 7354. doi: 10.1021/acsaem.1c01491

    [15] 苏毅. 用于质子陶瓷燃料电池的不锈钢/BCZY-Yb 电解质空气下连接机理[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    Su Yi. Research on air brazing of BCZY-Yb ceramic to strainless steel in protonic ceramic fuel cell[D]. Harbin: Harbin Institute of Techonligy, 2021.

    [16]

    Si X Y, Wang D, Li C, et al. Exploring the role of Mn-Co spinel coating on Crofer 22 APU in adjusting reactions with the Ag based sealant during reactive air brazing[J]. Journal of Materials research and technology, 2022, 16: 608 − 618. doi: 10.1016/j.jmrt.2021.12.032

图(10)  /  表(2)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  72
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 网络出版日期:  2022-10-12
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回