高级检索

钎焊超薄GH99蜂窝夹层结构力学性能分析

刘亚洲, 宋晓国, 程危危, 胡胜鹏, 曹健

刘亚洲, 宋晓国, 程危危, 胡胜鹏, 曹健. 钎焊超薄GH99蜂窝夹层结构力学性能分析[J]. 焊接学报, 2022, 43(11): 1-7. DOI: 10.12073/j.hjxb.20220706001
引用本文: 刘亚洲, 宋晓国, 程危危, 胡胜鹏, 曹健. 钎焊超薄GH99蜂窝夹层结构力学性能分析[J]. 焊接学报, 2022, 43(11): 1-7. DOI: 10.12073/j.hjxb.20220706001
LIU Yazhou, SONG Xiaoguo, CHENG Weiwei, HU Shengpeng, CAO Jian. Mechanical properties of brazed ultra-thin GH99 honeycomb sandwich structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 1-7. DOI: 10.12073/j.hjxb.20220706001
Citation: LIU Yazhou, SONG Xiaoguo, CHENG Weiwei, HU Shengpeng, CAO Jian. Mechanical properties of brazed ultra-thin GH99 honeycomb sandwich structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 1-7. DOI: 10.12073/j.hjxb.20220706001

钎焊超薄GH99蜂窝夹层结构力学性能分析

基金项目: 国家自然科学基金资助项目(项目号: 52175307, 51905125)和山东省泰山学者基金资助项目(tsqn201812128)
详细信息
    作者简介:

    刘亚洲,博士研究生;主要从事多孔夹层结构连接及其力学性能方面的研究;Email:asialiu@yandex.com

    通讯作者:

    宋晓国,教授;Email:songxg@hitwh.edu.cn.

  • 中图分类号: TG 47

Mechanical properties of brazed ultra-thin GH99 honeycomb sandwich structure

  • 摘要: 以制造轻量化超薄金属热防护结构为目标,首先采用真空钎焊方式制备了GH99超薄夹层结构;通过光学显微镜及扫描电子显微镜对夹层结构的钎焊界面及母材的微观组织进行了表征;通过万能试验机对夹层结构的界面剥离强度、面内与面外压缩性能进行了测试,并与有限元模拟结果进行对比.结果表明,钎焊前后母材晶粒由退火态孪晶组织转变为等轴组织;钎焊接头主要为Ni(s, s)和Ni3Si的共晶组织,并伴随部分Cr(Mo, Ni)固溶体、Ni2Si及NiSi2相;界面剥离在薄壁面板上失效;夹层结构面内与面外的压缩失效均表现为屈曲失效,模拟结果与试验结果一致.
    Abstract: In this study, aiming at the fabrication of lightweight ultra-thin metal thermal protection structures, an ultra-thin sandwich structure was fabricated by vacuum brazing. The brazing interface of the sandwich structure and the microstructure of the base metal were characterized by optical microscope and scanning electron microscope. The interfacial peel strength and in-plane/out-plane compression properties of the sandwich structure were tested by a universal testing machine and compared with the finite element simulation results. The results showed that the grains of base metal transform from annealed twin structure to equiaxed structure before and after brazing. The brazing interface is mainly composed of the eutectic structure of Ni(s, s) and Ni3Si, accompanied by a certain Cr(Mo, Ni) solid solution, Ni2Si and NiSi2 phases. The interfacial delamination failure occurred on the thin-walled panel. Both the in-plane and out-of-plane compression failures of the sandwich structure were buckling failures, and the simulation results were consistent with the experimental results.
  • 图  1   GH99超薄夹层结构的制造流程

    Figure  1.   Manufacturing process of GH99 ultra-thin sandwich structure

    图  2   钎焊工艺曲线

    Figure  2.   Brazing process curve

    图  3   钎焊前后蜂窝母材的金相组织形貌

    Figure  3.   Metallographic state of honeycomb base metal before and after brazing. (a) before brazing; (b) after brazing

    图  4   超薄夹层结构典型钎焊接头界面微观组织及图4b中主要元素面扫描结果(1 170 ℃/10 min)

    Figure  4.   Metallographic structures of brazing joint. (a) the brazing seam + base metal; (b) the brazing seam; (c) the base metal; Surface scans of elements in a brazed joint with a sandwich structure( Fig. 4b) (d)Cr; (e)Ni; (f)Mo; (g)Co; (h)Si (i) all

    图  5   圆形和矩形蜂窝夹层结构实物及其复合材料超声C−扫描检验结果

    Figure  5.   The round and rectangular honeycomb sandwich structure in kind and its composite material ultrasonic C-scan inspection results. (a) the round noneycomb sandwich; (b) the rectangular honeycomb sandwich structure

    图  6   GH99超薄夹层结构在不同加载条件下力学性能曲线及其失效结果

    Figure  6.   Load-displacement curves and failure results of ultra-thin sandwich structures under different loads. (a) force-displacement curves for interfacial tearing; (b)force displacement curve for out-of-plane compression; (c) in-plane compression of sandwich structures; (d) damage state of sandwich structures under interfacial tearing; (e) out-of-plane compression; (f) in-plane compression

    图  7   超薄夹层结构面外压缩屈曲过程有限元模拟

    Figure  7.   Finite element simulation of out-of-plane compression buckling process of ultra-thin sandwich structure

    图  8   超薄夹层结构面内压缩屈曲过程有限元模拟

    Figure  8.   Finite element simulation of in-plane compression buckling process of ultra-thin sandwich structure

    表  1   图4中标识各点的化学成分(原子分数, %)

    Table  1   Chemical compositions at each spot shown in Fig. 4

    位置NiCrSiWMoFe其它元素
    A5.0888.800.010.454.500.370.79
    B60.282.1133.591.320.750.381.57
    C69.3013.4911.401.840.570.772.63
    D30.042.4062.391.041.770.282.08
    E26.9947.430.598.139.551.236.08
    下载: 导出CSV
  • [1]

    Le V T, Ha N S, Goo N S. Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review[J]. Composites Part B:Engineering, 2021, 226: 109301. doi: 10.1016/j.compositesb.2021.109301

    [2]

    Uyanna O, Najafl H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176: 341 − 356. doi: 10.1016/j.actaastro.2020.06.047

    [3]

    Guo G, Jiang S, Chen H, et al. Influence of flow control on aerodynamic properties of an open cavity in rarefied hypersonic flows[J]. Acta Astronautica, 2022, 191: 404 − 416. doi: 10.1016/j.actaastro.2021.11.036

    [4]

    Huang W, Li S, Liu J, et al. Investigation on high angle of attack characteristics of hypersonic space vehicle[J]. Science China Technological Sciences, 2012, 55(5): 1437 − 1442. doi: 10.1007/s11431-012-4760-6

    [5]

    Zhang Q, Han Y, Chen C, et al. Ultralight X-type lattice sandwich structure (I): Concept, fabrication and experimental characterization[J]. Science in China Series E:Technological Sciences, 2009, 52(8): 2147 − 2154. doi: 10.1007/s11431-009-0219-9

    [6]

    Grujicic M, Galgaikar R, Snipes J S, et al. Multi-physics modeling of the fabrication and dynamic performance of all-metal auxetic-hexagonal sandwich-structures[J]. Materials & Design, 2013, 51: 113 − 130.

    [7]

    Yang W, Xiong J, Feng L-J, et al. Fabrication and mechanical properties of three-dimensional enhanced lattice truss sandwich structures[J]. Journal of Sandwich Structures & Materials, 2018, 22(5): 1594 − 1611.

    [8]

    Riggs B. Multi-scale computational modeling of Ni-base superalloy brazed joints for gas turbine applications [D]. CA: The Ohio State University, 2017.

    [9] 何云华, 喻桂英, 曾令军, 等. GH99合金成分控制及热处理[J]. 特钢技术, 2003, 11(1): 66 − 71. doi: 10.16683/j.cnki.issn1674-0971.2003.01.021

    He Yunhua, Yu Guiying, Zeng Lingjun, et al. Composition control and heat treatment of GH99 alloy[J]. Special Steel Technology, 2003, 11(1): 66 − 71. doi: 10.16683/j.cnki.issn1674-0971.2003.01.021

    [10]

    Zhang Z-J, Zhang Q-C, Huang L, et al. Effect of elevated temperature on the out-of-plane compressive properties of nickel based pyramidal lattice truss structures with hollow trusses[J]. Thin-Walled Structures, 2021, 159: 107247. doi: 10.1016/j.tws.2020.107247

    [11]

    Liu D, Song Y, Shi B, et al. Vacuum brazing of GH99 superalloy using graphene reinforced BNi-2 composite filler[J]. Journal of Materials Science & Technology, 2018, 34(10): 1843 − 1850.

    [12] 李文强. 高铌TiAl/GH3536异质蜂窝结构钎焊工艺及机理研究 [D]. 哈尔滨: 哈尔滨工业大学. 2020.

    Li Wenqiang. Research on brazing process and mechanism of high Nb containing TiAl/GH3536 heterogeneous honeycomb structure[D]. Harbin: Harbin Institute of Technology, 2020.

    [13]

    Moslemian R, Berggreen C. Interface fatigue crack propagation in sandwich X-joints – Part I: Experiments[J]. Journal of Sandwich Structures & Materials, 2013, 15(4): 429 − 450.

    [14]

    Moslemian R, Berggreen C. Interface fatigue crack propagation in sandwich X-joints – Part II: Finite element modeling[J]. Journal of Sandwich Structures & Materials, 2013, 15(4): 451 − 463.

    [15]

    Rajput M S, Burman M, Köll J, et al. Compression of structural foam materials – Experimental and numerical assessment of test procedure and specimen size effects[J]. Journal of Sandwich Structures & Materials, 2017, 21(1): 260 − 288.

    [16]

    Fan H L, Meng F H, Yang W. Sandwich panels with Kagome lattice cores reinforced by carbon fibers[J]. Composite Structures, 2007, 81(4): 533 − 539. doi: 10.1016/j.compstruct.2006.09.011

    [17]

    Han W P, Wan M, Tan J F, et al. Study on mechanical properties and microstructure development of Inconel 718 ultrathin-walled capillary-and-plate brazed structure using BNi-5 filler metal[J]. Welding in the World, 2022, 66(3): 541 − 555. doi: 10.1007/s40194-021-01219-8

    [18]

    Ghasemi A, Pouranvari M. Microstructural evolution mechanism during brazing of Hastelloy X superalloy using Ni–Si–B filler metal[J]. Science and Technology of Welding and Joining, 2017, 23(5): 441 − 448.

    [19]

    Jing Y, Yue X, Gao X, et al. The influence of Zr content on the performance of TiZrCuNi brazing filler[J]. Materials Science and Engineering:A, 2016, 678: 190 − 196. doi: 10.1016/j.msea.2016.09.115

    [20] 王冠. 铝合金薄壁梁结构轻量化设计及其变形行为的研究 [D]. 长沙: 湖南大学, 2013.

    Wang Guan. Lightweight design and deformation behavior of aluminum alloy thin-walled structure [D]. Changsha: Hunan University, 2013.

  • 期刊类型引用(1)

    1. 赵一帆,王莹,刘瑞涛,孟令坤,宋白钰,赵津,王重阳. Stability analysis of CO_2 gas shielded welding short-circuit transition process based on GMAW dynamic model. China Welding. 2023(04): 55-68 . 百度学术

    其他类型引用(1)

图(8)  /  表(1)
计量
  • 文章访问数:  547
  • HTML全文浏览量:  202
  • PDF下载量:  116
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-07-05
  • 网络出版日期:  2022-10-12
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回