Research progress on micro/nano joining technologies and failure behaviors in electronic packaging
-
摘要: 微纳连接技术是电子封装中的关键技术,近年来,随着电子产品逐渐小型化、轻量化的方向发展,各种先进的微纳连接层出不穷,但仍缺少系统的归纳及总结. 文中对引线键合技术,熔化微连接技术、软钎焊技术、纳米焊膏烧结技术、导电胶连接技术、表面活化键合技术及新兴的纳米连接技术等具有代表性的微纳连接技术进行了综述,并针对软钎焊焊点在热载荷、电载荷、机械载荷及多物理场耦合作用下微互连的失效行为研究进行了总结. 结果表明,未来的微纳连接技术将朝向互连尺寸更加微小,互连方法逐渐智能化,互连材料更加绿色,互连焊点更可靠的方向发展. 软钎焊互连焊点的失效行为分析也将逐渐从单一热场、电场载荷的研究拓展至热—电—力多物理场耦合载荷,与实际工况更加贴合,随着如同步辐射,三维X射线等先进表征技术的不断发展,失效行为及机制的研究也将更加精准.Abstract: Micro/nano joining are the key technologies in electronic packaging. With the development of electronic products in the direction of miniaturization and lightweight, various advanced micro/nano joining techniques have emerged in an endless flow, but there is still a lack of systematic summary. In this paper, the representative micro-nano bonding technologies are reviewed, including wire bonding, melting micro-bonding, soldering, nano-paste sintering, conductive adhesive bonding, surface-activated bonding and emerging nano joining technology. The failure behaviors of solder joints under thermal, electrical, mechanical and multi-physics coupling load are summarized. In the future, the micro/nano joining technology will be developed in the direction of smaller interconnect size, intelligent interconnect method, green interconnect material and more reliable interconnect solder joint. The failure behavior analysis of solder joints will gradually expand from the study of single load to thermo-electric-mechanical multiple physical field coupling load, which is more suitable for the actual working conditions. With the continuous development of advanced characterization technologies such as synchrotron radiation and 3D X-ray, the study of failure behaviors and mechanisms will also be more accurate.
-
Keywords:
- electronic packaging /
- micro/nano joining /
- failure behavior /
- reliability /
- multiple field coupling
-
0. 序言
钛合金由于其高温性能好、耐腐蚀、比强度高的特性被广泛应用在航空航天等领域[1],但单一的钛合金材料成本高昂,限制了钛合金的应用. 铝合金具有低密度,高比强度,成本低等优点[2]. 为了满足工业上对构件综合性能包括轻量化、低成本的要求,采用钛/铝复合构件是一种可行的方法. 然而钛/铝两种金属的冶金结合很容易产生大量的脆性金属间化合物[3],可能会影响焊接构件的性能.
截至目前,搅拌摩擦焊(FSW)[4-5]和熔钎焊[6-8]被证明是实现钛/铝异种金属无缺陷焊接的有效方法. 其中针对钛与铝的熔钎焊研究,常采用激光焊[6]、TIG焊[7]、MIG焊[8]等方法. 其中MIG熔钎焊由于低成本、熔覆效率高在钛/铝异种金属的焊接方面具有一定的优势. 文献[9-10]使用AlSi5焊丝对钛/铝异种金属进行了冷金属过渡(CMT)MIG焊搭接、脉冲电流MIG焊对接试验,均实现了钛与铝的熔钎焊连接. 为了提高Ti/Al熔钎焊接头的可靠性,一系列改进的MIG焊接方法被用于钛与铝的后续熔钎焊研究. 文献[11]用附加轴向磁场的CMT焊接方法对TA2纯钛和6061-T6铝合金进行了熔钎焊,利用外加磁场可以改善了液态金属的流动性,细化了焊缝晶粒,接头力学性能有所提高. 文献[12]采用外加旁路电流的MIG焊方法对TC4钛合金和6061铝合金进行了熔钎焊,结果发现,旁路电流可以提高焊丝的熔化效率,改善铝在钛上的润湿铺展行为,获得接头的剪切强度最高达到190 MPa,约为6061铝合金的96%. 文献[13]使用双面冷弧MIG组合焊对TA2钛合金和5A06铝合金进行了熔钎焊,在焊接热输入的影响下,钛合金与铝合金形成了Ti3.3Al + TiAl3和TiAl3两种不同的钛/铝界面,接头最高抗拉强度可超过300 MPa.
综上所述,采用MIG焊技术能够实现钛与铝的可靠熔钎焊,研究钛合金与铝合金的高速MIG熔钎焊,进一步提高焊接效率具有重要意义. 与普通MIG焊相比,超威弧MIG焊技术利用大功率电子开关元件控制输出电信号和瞬时电流增长率di/dt,在较小的弧压下实现了熔滴的超短弧喷射过渡,电弧能量集中,方向性和稳定性好;强大的电弧力和熔滴冲击力利于获得大深宽比的焊缝,适用于材料的高速焊接. 而关于钛与铝高速超威弧MIG焊的研究较少,高速超威弧MIG焊下钛/铝界面组织特性尚不明确. 文中采用高速超威弧MIG焊对TC4钛合金/5A06铝合金进行了熔钎焊尝试,研究了焊接热输入对接头的显微组织与力学性能的影响,重点分析了高速超威弧MIG焊工艺下钛/铝界面组织结构特征. 研究内容及结果可为实现钛合金/铝合金的高速、高效焊接提供数据支持和理论基础.
1. 试验材料与方法
试验所采用的是超威弧MIG焊接的焊接方法,其焊接过程的熔滴过渡特征和电流电压特征如图1所示. 试验所用母材为TC4钛合金和5A06铝合金,尺寸为100 mm × 150 mm × 3 mm,焊丝采用ϕ1.2 mm的SAl5183(Al-Mg5)焊丝,母材及焊丝名义化学成分见表1. 焊前使用钢丝刷将TC4钛合金打磨至光亮,再使用体积分数为40%的 HNO3溶液酸洗3 min;对5A06铝合金使用40 ~ 60 ℃、浓度为10% NaOH溶液碱洗3 min,再使用体积分数为40%的 HNO3溶液酸洗3 min,以去除表面油污和氧化膜;最后所有试板用无水乙醇冲洗,晾干待焊.
表 1 母材及焊丝的名义化学成分(质量分数,%)Table 1. Nominal chemical compositions of base metals and welding wire试验材料 Al Si Fe Cu Zn Mn Mg V Ti 其他 TC4 6.43 — 0.14 — — — — 4.13 余量 ≤0.2 5A06 余量 ≤0.5 ≤0.5 ≤0.1 ≤0.2 0.3 ~ 0.6 4.8 ~ 5.5 — — — SAl5183 余量 0.4 0.4 0.1 0.25 0.5 ~ 1.0 4.3 ~ 5.2 — 0.15 ≤0.2 采用德国alpha Q 351 puls MIG/MAG多功能逆变脉冲水冷直流焊机,选择超威弧模式进行TC4钛合金和5A06铝合金的焊接. 为了增加TC4/5A06结合面积、促进熔融金属在TC4母材上的润湿铺展,TC4板单侧开40°坡口. 焊接时,TC4板和5A06板对接装配,调节焊丝向铝侧偏移0.5 mm,焊丝伸出长度为12 mm, 焊接速度为180 cm/min.其它主要工艺参数见表2. 焊缝正面采用20 L/min的体积分数为80%Ar + 20%He的惰性气体保护,背面采用15 L/min的高纯Ar(体积分数99.999%)气体保护.
表 2 焊接工艺参数Table 2. Parameters for the welding process平均焊接电流I/A 平均电弧电压U/V 送丝速率vf/(m·min−1) 热输入E/(kJ·cm−1) 130 19.6 7.9 0.85 140 19.9 8.5 0.93 150 20.4 9.1 1.02 161 20.8 9.7 1.11 171 21.1 10.3 1.20 焊接结束后,垂直于焊缝方向获取金相试样. 使用JSM-7001F热场发射SEM观察Ti/Al界面处显微组织;使用X射线衍射仪分析Ti/Al界面附近焊接区物相组成;使用Oxford X-Max型大面积电制冷EDS进行界面组织的元素分析;使用万能力学试验机测试试样的拉伸力学性能.
2. 试验结果
2.1 Ti/Al接头宏观成形
不同焊接热输入下获得的TC4/5A06接头宏观形貌如图2所示. 固定焊接速度,在增大热输入的同时,送丝速度同步增大,焊丝填充金属增多,焊缝更加饱满. 在热输入为0.93 kJ/cm时,熔池焊接热循环峰值温度较低,接头根部受热不足,降低了液态铝在钛表面的润湿性,还没有完全铺展到接头根部时已经凝固,形成未熔合缺陷,如图2a所示;当热输入增大到1.11 kJ/cm时,接头正、背面焊缝更加饱满,成形均匀、连续,背面余高和正面余高均有所增加,焊缝表面及横截面未发现明显的缺陷;热输入增大至1.20 kJ/cm时,电弧能量较高,熔池中液态金属过热,流动性增大,在重力和电弧力综合作用下,大量铝液从焊缝背面滴落,形成熔穿缺陷,如图2c所示. 相比于之前关于普通MIG电弧的Ti/Al异种金属焊接的研究[14],采用超威弧技术电弧能量更加集中,可以在更小的热输入下实现Ti/Al异种金属的连接.
2.2 Ti/Al界面显微组织特性分析
为了分析接头TC4/5A06界面显微组织特性,选择接头厚度方向上不同部位进行显微组织分析,如图2a所示. 不同热输入下TC4/5A06界面显微组织如图3 ~ 图5所示. 在热输入E = 0.93 kJ/cm时,沿接头厚度方向上TC4/5A06界面处仅形成了一层厚度不足1 μm的牙状界面反应层,如图3所示,接头上部反应层最厚,接头下部最薄. 当E = 1.11 kJ/cm时,热输入的增大使得熔池温度升高,界面冶金反应时间变长,接头各部位反应层厚度增加,如图4所示,接头上部和中部厚约1.5 μm,接头下部厚约0.7 μm. 当E = 1.20 kJ/cm时,接头界面存在两种界面结构,接头上部和中部形成了双层结构:靠近焊缝侧的厚度为1.5 ~ 5 μm的界面反应层Ⅰ和靠近TC4侧的厚约1 μm的界面反应层Ⅱ,如图5所示,接头下部仍为单层牙状反应层,厚度约1 μm. 在高焊接速度和超威弧的作用下,接头厚度方向上的组织差异较小.
分析认为,由于焊接电弧温度场沿TC4侧坡口面分布不均匀,且熔融的液态金属自下而上填充到坡口间隙中,导致TC4/5A06界面沿厚度方向上不同部位的热输入存在差异,形成的界面组织在厚度和形态上也有差异[15]. 接头上部和中部距离电弧较近,焊接热输入相对较大,焊接热循环高温停留时间长,TC4与5A06冶金反应持续时间较长,形成的界面反应层较厚;接头下部距离电弧较远,焊接热输入相对较小,形成的界面反应层较薄. 当热输入达到1.20 kJ/cm时,接头上部TC4/5A06界面附近的峰值温度进一步提高,Ti与Al元素扩散速度加快,在复杂的冶金反应后形成了双层结构;而接头下部距离电弧中心较远,冶金反应不足仅形成单层界面反应层.
2.3 接头拉伸力学性能
对不同焊接热输入下TC4/5A06接头的抗拉强度进行测试(每个接头截取3个拉伸试样),结果如图6所示.TC4/5A06接头抗拉强度随着焊接热输入的增大逐渐增大,在保证焊缝成形的前提下,抗拉强度最高可达232 MPa. TC4/5A06接头强度主要与Ti-Al金属间化合物有关,而金属间化合物的形成主要与焊接热输入有关. 热输入过低时,界面反应层厚度整体较薄;接头根部出现未熔合区域,界面有效结合面积减小,且未熔合缺口尖端存在应力集中导致接头强度低. 随着热输入的增加,界面反应层厚度增加,接头强度逐渐提高. 当热输入过大时,界面冶金反应剧烈形成双层结构,界面反应层厚度进一步增大,接头强度最高达到260 MPa,但由于在此工艺下焊缝存在熔穿缺陷,不适用于钛与铝的焊接.
综合考虑接头成形缺陷和拉伸力学性能因素,取E = 1.11 kJ/cm时所获接头进行断裂分析,断裂路径如图7所示. 接头下部断裂在Ti/Al界面处,而上部和中部断裂在焊缝中. 接头低倍断口形貌如图8a所示,B区为Ti/Al界面处断裂面形貌,断面平整光滑,表现为脆性的解理断裂,图8b是B区的局部放大图,表面存在大量细小的撕裂痕迹;C区为焊缝区断裂面形貌,局部放大(图8c)显示粗糙的断口存在大量的韧窝,表现为韧性断裂. 分析认为,接头下部冶金结合相对不足,形成的反应层较薄,是整个接头的强度薄弱区域,在受到外部的拉伸作用力时,裂纹首先在接头下部产生,并沿着TC4/5A06界面延伸;由于界面反应层与两侧材料晶体结构差异大,结合较弱,主要呈脆性断裂. 当裂纹到达接头中部时,由于中部反应层较厚,结合强度较高,裂纹扩展受到阻碍,偏转后进入到焊缝中;焊缝内部主要是α-Al基体,具有较好的塑性,主要呈韧性断裂.
2.4 TC4/5A06界面物相分析
根据前文TC4/5A06界面显微组织特性分析可知,热输入较大时界面处会形成两种反应层结构. 为较为全面地分析TC4/5A06界面附近物相组成和TC4/5A06界面结合机制,选取热输入为1.11 kJ/cm和1.20 kJ/cm的两个试样,平行于坡口面打磨至TC4/5A06界面处,进行XRD分析. 热输入为1.11 kJ/cm的TC4/5A06接头XRD分析结果如图9a所示,除Ti、Al外,在TC4/5A06界面附近仅检测到TiAl3一种新相. 热输入为1.20 kJ/cm的TC4/5A06接头XRD分析结果如图9b所示,除Ti、Al外,界面附近还存在TiAl3和Ti3Al两种新相.
当焊接热输入为1.11 kJ/cm时,接头TC4/5A06界面处仅形成单层牙状结构,对界面选区进行EDS面扫描分析,结果如图10a所示. 界面处依靠Ti和Al元素的相互扩散,发生冶金反应形成了一厚度约1.5 μm的界面反应层. 选择 A点进行EDS点扫描分析,结果见表3,Ti∶Al元素原子占比约为1∶3,结合XRD分析结果,认为该界面反应层为TiAl3相. 分析认为,母材中Ti通过扩散进入熔池中后,与Al反应可能会形成TiAl、TiAl3等多种Ti-Al金属间化合物,其中TiAl3的生成吉布斯自由能最低,Ti与液态Al首先发生Ti + 3Al→TiAl3反应,优先形成TiAl3相;鉴于扩散至熔池中的Ti相 相比于熔池中的Al占比很小,因此所有Ti与Al反应全部形成了TiAl3相,没有形成其它Ti-Al金属间化合物. 熔池冷却过程中,固-液界面为TiAl3的形成提供了异质形核界面,而TiAl3晶粒优先沿温度梯度方向生长,最终在TC4/5A06界面处形成了几乎垂直于界面向焊缝内部延伸生长的TiAl3层.
表 3 EDS元素分析结果(原子分数,%)Table 3. EDS results for spot A-C in Fig. 10位置 Ti Al Mg V A 28.33 71.06 0.23 0.38 B 24.16 74.31 0.96 0.57 C 71.38 28.09 0.53 0 焊接热输入达到1.20 kJ/cm时,接头上部和中部TC4/5A06界面处形成双层结构,对该处界面选区进行EDS面扫描分析,如图10b所示. 与单层界面反应层相比,该处界面处存在与母材不同的2个明显的浓度梯度层,靠近焊缝侧的Al强度较高,靠近TC4侧的Ti强度较高. 在两个反应层处分别取B、C点进行EDS点扫描分析,结果见表3,B点Ti: Al元素原子占比约为1∶3,结合XRD分析结果,认为此处为TiAl3相;C点Ti∶Al元素原子占比约为3∶1,认为此处为Ti3Al相. 分析认为,当焊接热输入较大时,Ti元素向液态Al中的扩散程度加大,大量的Ti扩散到熔池中,与Al基液态金属发生冶金反应,形成一层较厚的TiAl3相. 同时,TC4/5A06界面热循环峰值温度超过了α-Ti→β-Ti转变温度,在界面处钛母材侧中形成一薄层β-Ti;在高温作用下,Al元素向β-Ti中发生大量扩散,形成β-Ti(Al) 薄层;冷却过程中,发生β-Ti(Al)→α-Ti(Al)转变,形成过固溶的α-Ti(Al);随着温度继续下降,Al在α-Ti(Al)中的溶解度下降,发生α-Ti(Al)→Ti3Al反应,形成一薄层Ti3Al相.
综上,在E ≤ 1.11 kJ/cm时,钛与焊缝通过TC4/5A06界面处元素扩散形成单层TiAl3实现钎焊结合.当E ≥ 1.20 kJ/cm时,接头上部和中部钛与焊缝通过形成TiAl3层、Ti3Al层双层结构实现钎焊结合;其它部位钛与焊缝通过形成单层TiAl3实现钎焊结合. 即在所有试验工艺下,钛侧均为钎焊结合,而铝侧均为熔焊结合,因此是典型的熔钎焊连接.
结合焊缝成形、显微组织及力学性能分析,在试验参数条件下,最优的TC4/5A06高速超威弧MIG焊的焊接热输入范围是1.02 ~ 1.11 kJ/cm.
3. 结论
(1)填充SAl5183焊丝,采用高速超威弧MIG焊接工艺,可以实现TC4钛合金和5A06铝合金的有效熔钎焊. 在热输入为0.93 kJ/cm时,接头根部出现未熔合缺陷;在热输入达到1.20 kJ/cm时,接头出现熔穿缺陷. 在试验参数条件下,合适的高速超威弧MIG焊接热输入范围是1.02 ~ 1.11 kJ/cm.
(2)针对TC4钛合金和5A06铝合金的高速超威弧MIG焊,当热输入E ≤ 1.11 kJ/cm时,Ti/Al界面处仅形成单层TiAl3;当热输入E ≥ 1.20 kJ/cm时,接头上部和中部Ti/Al界面处形成厚度为2.5 ~ 6 μm的TiAl3 + Ti3Al双层结构,接头下部为厚度约1 μm的 TiAl3层.
(3) TC4/5A06接头抗拉强度随着热输入的增大逐渐增大,在保证焊缝成形的前提下,热输入为1.11 kJ/cm时,抗拉强度最高可达232 MPa. 接头上部和中部断裂在焊缝中,表现为韧性断裂;接头下部断裂在Ti/Al界面处,表现为脆性断裂.
-
图 2 激光焊连接玻璃和硅微观形貌[13]
Figure 2. Microstructure of bonded glass and silicon by laser joining
图 3 微电阻连接铝丝与镀金铜焊盘微观形貌[19]
Figure 3. Microstructure of bonded Al wire with gold plated copper pad by micro-resistance welding
图 4 电流辅助全IMC焊点的微观形貌[27]
Figure 4. Microstructure of full-IMC solder joint assisted by electric current
图 5 Cu/Cu@Ag纳米焊膏/Cu三明治焊点抗剪强度[31]
Figure 5. Shear strength of sintered Cu/Cu@Ag nanopaste/Cu sandwich joint
图 6 聚苯胺改性的各向同性导电胶连接Cu-Cu焊盘的微观结构[42]
Figure 6. Microstructure of Cu-Cu pad joined by polyaniline modified isotropic conductive adhesive
图 7 自限制纳米钎焊连接银纳米线[52]
Figure 7. Joining of silver nanowires by self-limited nanosoldering
图 8 添加氧化石墨烯前后的仿真[53]
Figure 8. Simulation before and after adding graphene oxide
图 9 不同温度下贮存不同时间IMC厚度变化[57]
Figure 9. Variation of IMC thickness after storing at different time at different temperature
图 10 焊点电迁移失效行为[59]
Figure 10. Failure behavior of solder joints under electromigration
图 11 机械固定对应力分布的影响[64]
Figure 11. Effect of fixation on stress distribution
-
[1] Tummala R. Fundamentals of microsystems packaging[M]. New York: McGraw-Hill Professional, 2001.
[2] Kaimori S, Nonaka T, Mizogucgi A. The development of Cu bonding wire with oxidation-resistant metal coating[J]. IEEE Transactions on Advanced Packaging, 2006, 29: 227 − 231. doi: 10.1109/TADVP.2006.872999
[3] 王星星, 上官林健, 何鹏, 等. 基于熵模型镀锡银钎料钎焊性能的定量表征[J]. 焊接学报, 2020, 41(1): 18 − 22. Wang Xingxing, Shangguan Linjian, He Peng, et al. Quantitative characterization of brazability for Sn-plated Ag brazing filler metals based on entropy model devices[J]. Transactions of the China Welding Institution, 2020, 41(1): 18 − 22.
[4] 杨婉春, 王帅, 祝温泊, 等. 低温烧结纳米铜焊膏的制备及其连接性能分析[J]. 焊接学报, 2018, 39(6): 72 − 76. doi: 10.12073/j.hjxb.2018390152 Yang Wanchun, Wang Shuai, Zhu Wenbo, et al. Preparation and connection performance analysis of solder paste by low-temperature sintering Cu nanoparticles[J]. Transactions of the China Welding Institution, 2018, 39(6): 72 − 76. doi: 10.12073/j.hjxb.2018390152
[5] Hu A, Jolanta JR, Sano T. Joining technology innovations at the macro, micro, and nano levels[J]. Applied Sciences, 2019, 9(17): 3568. doi: 10.3390/app9173568
[6] 邹贵生, 闫剑峰, 母凤文. 微连接和纳连接的研究新进展[J]. 焊接学报, 2011, 32(4): 107 − 112,118. Zou Guisheng, Yan Jianfeng, Mu Fengwen, et al. Recent progress in microjoining and nanojoining[J]. Transactions of The China Welding Institution, 2011, 32(4): 107 − 112,118.
[7] Chen M, Zhang Y, Guo Y, et al. Research on flip-chip bonding process and thermal cycle reliability simulation of 3-D stacked structure[J]. IEEE Transactions on Componentrs Packaging and Manufacturing Technology, 2022, 12(1): 51 − 58. doi: 10.1109/TCPMT.2021.3127157
[8] Che F, Wai L, Chai T. Failure mode and mechanism analysis for Cu wire bond on Cu/low-k chip by wire pull test and finite-element analysis[J]. IEEE Transactions on Device and Materials Reliability, 2018, 18: 163 − 172. doi: 10.1109/TDMR.2018.2808348
[9] 邹军, 谢昶. 多芯片组件中金丝金带键合互连的特性比较[J]. 微波学报, 2010, 26(增刊): 378 − 380. Zou Jun, Xie Chang. Recent progress in microjoining and nanojoining[J]. Journal of Microwaves, 2010, 26(supplement): 378 − 380.
[10] 王尚, 王凯枫, 张贺, 等. 射频器件超细引线键合工艺及性能研究[J]. 机械工程学报, 2021, 57(22): 201 − 208. doi: 10.3901/JME.2021.22.201 Wang Shang, Wang Kaifeng, Zhang He, et al. Study on ultrafine wire bonding and performance of radio frequency devices[J]. Journal of Mechanical Engineering, 2021, 57(22): 201 − 208. doi: 10.3901/JME.2021.22.201
[11] 王尚, 马竟轩, 杨东升, 等. 射频器件超细引线键合射频性能仿真[J]. 焊接学报, 2021, 42(10): 1 − 7. Wang Shang, Ma Jingxuan, Yang Dongsheng, et al. Research on the RF performance simulation of ultra-fine wire bonding of RF devices[J]. Transactions of the China Welding Institution, 2021, 42(10): 1 − 7.
[12] Norrdin I H W, Okamoto Y, Okada A, et al. Effect of focusing condition on molten area characteristics in micro-welding of borosilicate glass by picosecond pulsed laser[J]. Applied Physics, A. Materials Science & Processing, 2016, 122(5): 492.
[13] 程战, 郭伟, 刘磊, 等. 石英玻璃与硅的飞秒激光微连接及其接头性能研究[J]. 中国激光, 2015, 42(9): 225 − 231. Cheng Zhan, Guo Wei, Liu Lei, et al. Mechanical properties of microweld of silica glass to silicon by femtosecond laser[J]. Chinese Journal of Laser, 2015, 42(9): 225 − 231.
[14] Huang Y D, Pequegnat A, Zou G S, et al. Crossed-wire laser microwelding of Pt-10 Pct Ir to 316 LVM stainless steel: Part II. effect of orientation on joining mechanism[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2012, 43A: 1234 − 1243.
[15] Zou G, Huang Y, Pequegnat A, et al. Crossed-wire laser microwelding of Pt-10 Pct Ir to 316 low-carbon vacuum melted stainless steel: Part I. mechanism of joint formation[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2012, 43A: 1223 − 1233.
[16] 陈伟彦, 张延松. 太阳能电池互连片平行间隙电阻焊工艺优化[J]. 机械设计与研究, 2019, 35(5): 75 − 79. doi: 10.13952/j.cnki.jofmdr.2019.0279 Chen Weiyan, Zhang Yansong. Study on process optimization of parallel gap resistance welding of solar cell and interconnector based on temperature field analysis[J]. Machine Design and Research, 2019, 35(5): 75 − 79. doi: 10.13952/j.cnki.jofmdr.2019.0279
[17] Zhang W, Cong S, Wen Z, et al. Experiments and reliability research on bonding process of micron copper wire and nanometer gold layer[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92: 4073 − 4080. doi: 10.1007/s00170-017-0490-z
[18] Zhang H, Wang S, Wu B, et al. Ultrafast parallel micro-gap resistance welding of an AuNi9 microwire and Au microlayer[J]. Micromachines, 2021, 12(1): 51. doi: 10.3390/mi12010051
[19] Wang S, Zhang H, Li Y, et al. Phase transformation behavior of Al-Au-Cu intermetallic compounds under ultra-fast micro resistance bonding process[J]. Materials Characterization, 2021, 180: 111401. doi: 10.1016/j.matchar.2021.111401
[20] Cong S, Zhang W, Zhang H, et al. Growth kinetics of (Cu xNi1- x)6Sn5 intermetallic compound at the interface of mixed Sn63Pb37/SAC305 BGA solder joints during thermal aging test[J]. Materials Research Express, 2021, 8: 106301. doi: 10.1088/2053-1591/ac3168
[21] Rajendran S, Jung D, Jung J. Investigating the physical, mechanical, and reliability study of high entropy alloy reinforced Sn-3.0Ag-0.5Cu solder using 1608 chip capacitor/ENIG joints[J]. Journal of Materials Science: Materials in Electronics, 2022, 33: 3687 − 3710. doi: 10.1007/s10854-021-07562-2
[22] Tian Y, Wang C, Zhang X, et al. Interaction kinetics between PBGA solder balls and Au/Ni/Cu metallisation during laser reflow bumping[J]. Soldering & Surface Mount Technology, 2003, 15(2): 17 − 21.
[23] Tian Y, Wang C. Formation and change of AuSn4 compounds at interface between PBGA solder ball and Au/Ni/Cu metallization during laser and infrared reflow soldering[J]. Acta Metallurgica Sinica (English Letters), 2004, 17(2): 199 − 204.
[24] Yao P, Li X, Liang X B, et al. Investigation of soldering process and interfacial microstructure evolution for the formation of full Cu3Sn joints in electronic packaging[J]. Materials Science in Semiconductor Processing, 2017, 58: 39 − 50. doi: 10.1016/j.mssp.2016.11.019
[25] Li M, Li Z, Xiao Y, et al. Rapid formation of Cu/Cu3Sn/Cu joints using ultrasonic bonding process at ambient temperature[J]. Applied Physics Letters, 2013, 102(9): 094104. doi: 10.1063/1.4794684
[26] Feng J, Hang C, Tian Y, et al. Effect of electric current on grain orientation and mechanical properties of Cu-Sn intermetallic compounds joints[J]. Journal of Alloys and Compounds, 2018, 753: 203 − 211. doi: 10.1016/j.jallcom.2018.04.041
[27] Liu B, Tian Y, Wang C, et al. Ultrafast formation of unidirectional and reliable Cu3Sn-based intermetallic joints assisted by electric current[J]. Intermetallics, 2017, 80: 26 − 32. doi: 10.1016/j.intermet.2016.10.004
[28] Liu B, Tian Y, Feng J, et al. Enhanced shear strength of Cu–Sn intermetallic interconnects with interlocking dendrites under fluxless electric current-assisted bonding process[J]. Journal of Materials Science, 2017, 52: 1943 − 1954. doi: 10.1007/s10853-016-0483-6
[29] Schwarzbauer H, Kuhnert R. Novel large area joining technique for improved power device performance[J]. IEEE Transactions on Industry Applications, 1991, 27(1): 93 − 95. doi: 10.1109/28.67536
[30] Dai Y, Ng M, Anantha P, et al. Enhanced copper micro/nano-particle mixed paste sintered at low temperature for 3D interconnects[J]. Applied Physics Letters, 2016, 108: 263103. doi: 10.1063/1.4954966
[31] Tian Y, Jiang Z, Wang C, et al. Sintering mechanism of the Cu–Ag core–shell nanoparticle paste at low temperature in ambient air[J]. RSC Advances, 2016, 6: 91783 − 91790. doi: 10.1039/C6RA16474A
[32] Liu X, Liu W, Wang C, et al. Optimization and modeling for one-step synthesis process of Ag-Cu nano-particles using DOE methodology[J]. Journal of Materials Science: Materials in Electronics, 2016, 27: 4265 − 4274. doi: 10.1007/s10854-016-4292-0
[33] Zhong Y, An R, Wang C, et al. Low temperature sintering Cu6Sn5 nanoparticles for superplastic and super-uniform high temperature circuit interconnections[J]. Small, 2015, 11: 4097 − 4103. doi: 10.1002/smll.201500896
[34] Guo L, Liu W, Ji X, et al. Facile synthesis of Cu10Sn3 nanoparticles and their sintering behavior for power device packaging[J]. Results in Materials, 2021, 10: 100187. doi: 10.1016/j.rinma.2021.100187
[35] Jia Q, Zou G, Zhang H, et al. Sintering mechanism of Ag-Pd nanoalloy film for power electronic packaging[J]. Applied Surface Science, 2021, 554: 149579. doi: 10.1016/j.apsusc.2021.149579
[36] 付善灿. 纳米银焊膏无压低温烧结连接方法的绝缘栅双极型晶体管(IGBT)模块封装应用研究[D]. 天津: 天津大学, 2016. Fu Shancan. Research on application of insulated gate bipolar transistor (IGBT) module fabrication by pressureless low temperature sintering of nanosilver paste[D]. Tianjin: Tianjin University, 2016.
[37] Zhang Z, Chen C, Suetake, et al. Pressureless and low-temperature sinter-joining on bare Si, SiC and GaN by a Ag flake paste[J]. Scripta Materialia, 2021, 198: 113833. doi: 10.1016/j.scriptamat.2021.113833
[38] 黄圆, 杭春进, 田艳红, 等. 纳米铜银核壳焊膏脉冲电流快速烧结连接铜基板研究[J]. 机械工程学报, 2019, 55(24): 51 − 56. doi: 10.3901/JME.2019.24.051 Huang Yuang, Hang Chunjin, Tian Yanhong, et al. Rapid sintering of nano copper-silver core-shell paste and interconnection of copper substrates by pulse current[J]. Journal of Mechanical Engineering, 2019, 55(24): 51 − 56. doi: 10.3901/JME.2019.24.051
[39] Ji H, Zhou J, Liang M, et al. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging[J]. Ultrasonics Sonochemistry, 2018, 41: 375 − 381. doi: 10.1016/j.ultsonch.2017.10.003
[40] Liu W, Wang Y, Zheng Z, et al. Laser sintering mechanism and shear performance of Cu-Ag-Cu joints with mixed bimodal size Ag nanoparticles[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 7787 − 7793. doi: 10.1007/s10854-019-01094-6
[41] Liu H, Ma R, Zhao D, et al. Application of silver nanoparticles in electrically conductive adhesives with silver micro flakes[J]. China Welding, 2022, 31(2): 23 − 28.
[42] Wen J, Tian Y, Hang C, et al. Fabrication of novel printable electrically conductive adhesives (ECAs) with excellent conductivity and stability enhanced by the addition of polyaniline nanoparticles[J]. Nanomaterials, 2019, 9(7): 960. doi: 10.3390/nano9070960
[43] Cao G, Cui H, Wang L, et al. Highly conductive and highly dispersed polythiophene nanoparticles for fabricating high-performance conductive adhesives[J]. ACS Applied Electronic Materials, 2020, 2: 2750 − 2759. doi: 10.1021/acsaelm.0c00457
[44] 马跃辉. PS/金属核壳结构复合微球的制备及其在各向异性导电胶膜上的应用[D]. 上海: 东华大学, 2013. Ma Yuehui. Preparation of polystyrene/metal core/shell microspheres and their application in anisotropic conductive film[D]. Shanghai: Donghua University, 2013.
[45] 王正家. ACA互连的多因素作用分析与性能优化[D]. 武汉: 华中科技大学, 2010. Wang Zhengjia. Analysis of anisotropic conductive adhesive interconnection under multi-factors influence and optimization for its performance [D]. Wuhan: Huazhong University of Science and Technology, 2010.
[46] 陈显才. 倒装键合中各向异性导电胶微互连电阻形成机理研究[D]. 武汉: 华中科技大学, 2012. Chen Xiancai. The research on the formation mechanism of micro ACA joints resistance in the flip chip bonding[D]. Wuhan: Huazhong University of Science and Technology, 2012.
[47] Bo G, Yu H, Ren L, et al. Gallium-indium-tin liquid metal nanodroplet-based anisotropic conductive adhesives for flexible integrated electronics[J]. ACS Applied Nano Materials, 2021, 4: 550 − 557. doi: 10.1021/acsanm.0c02870
[48] Wang C, Wang Y, Tian Y, et al. Room-temperature direct bonding of silicon and quartz glass wafers[J]. Applied Physics Letters, 2017, 110: 221602. doi: 10.1063/1.4985130
[49] 张贺, 王尚, 冯佳运, 等. 金属/非金属纳米线连接及应用研究进展[J]. 机械工程学报, 2022, 58(2): 76 − 87. Zhang He, Wang Shang, Feng Jiayun, et al. Recent progress of metal/nonmetal nanowire joining technology and its applications[J]. Journal of Mechanical Engineering, 2022, 58(2): 76 − 87.
[50] Lin L, Liu L, Peng P, et al. In situ nanojoining of Y- and T-shaped silver nanowires structures using femtosecond laser radiation[J]. Nanotechnology, 2016, 27: 125201. doi: 10.1088/0957-4484/27/12/125201
[51] Zhang H, Tian Y, Wang S, et al. Highly stable flexible transparent electrode via rapid electrodeposition coating of Ag-Au alloy on copper nanowires for bifunctional electrochromic and supercapacitor device[J]. Chemical Engineering Journal, 2020, 399(20): 125075.
[52] Huang Y, Tian Y, Hang C, et al. Self-limited nanosoldering of silver nanowires for high-performance flexible transparent heaters[J]. ACS Applied Materials & Interfaces, 2019, 11: 21850 − 21858.
[53] Ding S, Zhang S, Tong X, et al. Room-temperature nanojoining of silver nanowires by graphene oxide for highly conductive flexible transparent electrodes[J]. Nanotechnology, 2022, 34: 045201.
[54] Gao L, Liu Z, Li C. Failure mechanisms of SAC/Fe-Ni solder joints during thermal cycling[J]. Journal of Electronic Materials, 2017, 46: 5338 − 5348. doi: 10.1007/s11664-017-5554-1
[55] Mattila T, Kivilahti J. The role of recrystallization in the failure of SnAgCu solder interconnections under thermomechanical loading[J]. IEEE Transactions on Components and Packaging Technologies, 2010, 33: 629 − 635. doi: 10.1109/TCAPT.2010.2051268
[56] Ji X, An Q, Xia Y, et al. Maximum shear stress-controlled uniaxial tensile deformation and fracture mechanisms and constitutive relations of Sn-Pb eutectic alloy at cryogenic temperatures[J]. Materials Science and Engineering: A, 2021, 819: 141523. doi: 10.1016/j.msea.2021.141523
[57] Tian R, Hang C, Tian Y, et al. Interfacial intermetallic compound growth in Sn-3Ag-0.5Cu/Cu solder joints induced by stress gradient at cryogenic temperatures[J]. Journal of Alloys and Compounds, 2019, 800: 180 − 190. doi: 10.1016/j.jallcom.2019.05.295
[58] Chen C, Tong H, Tu K. Electromigration and thermomigration in Pb-Free flip-chip solder joints[J]. Annual Review of Materials Research, 2010, 40: 531 − 555. doi: 10.1146/annurev.matsci.38.060407.130253
[59] Chang Y, Cheng Y, Xu F, et al. Study of electromigration-induced formation of discrete voids in flip-chip solder joints by in-situ 3D laminography observation and finite-element modeling[J]. Acta Materialia, 2016, 117: 100 − 110. doi: 10.1016/j.actamat.2016.06.059
[60] Liu B, Tian Y, Qin J, et al. Degradation behaviors of micro ball grid array (μBGA) solder joints under the coupled effects of electromigration and thermal stress[J]. Journal of Materials Science: Materials in Electronics, 2016, 27: 11583 − 11592. doi: 10.1007/s10854-016-5289-4
[61] Luan J, Tee T, Pek E, et al. Dynamic responses and solder joint reliability under board level drop test[J]. Microelectronics Reliability, 2007, 47: 450 − 460. doi: 10.1016/j.microrel.2006.05.012
[62] Marjamaki P, Mattila T T, Kivilahti J K. A comparative study of the failure mechanisms encountered in drop and large amplitude vibration tests[C]//56th Electronic Components and Technology Conference 2006. San Diego, CA, USA, 2006: 95-101.
[63] Liu F, Meng G. Random vibration reliability of BGA lead-free solder joint[J]. Microelectronics Reliability, 2014, 54: 226 − 232. doi: 10.1016/j.microrel.2013.08.020
[64] 李跃, 田艳红, 丛森, 等. PCB组装板多器件焊点疲劳寿命跨尺度有限元计算[J]. 机械工程学报, 2019, 55(6): 54 − 60. doi: 10.3901/JME.2019.06.054 Li Yue, Tian Yanhong, Cong Sen, et al. Multi-scale finite element analysis into fatigue lives of various component solder joints on printed circuit board[J]. Journal of Mechanical Engineering, 2019, 55(6): 54 − 60. doi: 10.3901/JME.2019.06.054
[65] Feng D, Wang F, Li D, et al. Atomic migration on Cu in Sn-58Bi solder from the interaction between electromigration and thermomigration[J]. Materials Research Express, 2019, 6: 046301. doi: 10.1088/2053-1591/aaf91c
[66] Ye H, Basaran C, Hopkins D. Thermomigration in Pb-Sn solder joints under joule heating during electric current stressing[J]. Applied Physics Letters, 2003, 82: 1045 − 1047. doi: 10.1063/1.1554775
[67] 李望云. 电-热-力耦合场作用下无铅微焊点的变形和断裂行为及其尺寸效应研究[D]. 广州: 华南理工大学, 2017. Li Wangyun. Deformation and fracture behavior of microscale lead-free solder joints under electro-thermo-mechanical coupled loads and their size effects[D]. Guangzhou: South China University of Technology, 2017.
[68] 李胜利, 任春雄, 杭春进, 等. 极端热冲击和电流密度耦合Sn-3.0Ag-0.5Cu焊点组织演变[J]. 机械工程学报, 2022, 58(2): 291 − 299. doi: 10.3901/JME.2022.02.291 Li Shengli, Ren Chunxiong, Hang Chunjin, et al. Microstructure evolution of Sn-3.0Ag-0.5Cu solder joints under extreme temperature changes and current stressing[J]. Journal of Mechanical Engineering, 2022, 58(2): 291 − 299. doi: 10.3901/JME.2022.02.291
-
期刊类型引用(7)
1. 何鹏,徐瑞,周航泽,王策,林盼盼,林铁松. 石墨与Al低温钎料设计及接头的组织和性能. 焊接. 2025(03): 1-7 . 百度学术
2. 孙鑫,金家富,闵志先,吴伟,张建,何威. 多芯片组件功率芯片粘接失效分析及工艺改进. 电子工艺技术. 2025(02): 15-18 . 百度学术
3. 陈宏涛,刘加豪,邱业君,钟颖,刘海星,李明雨. 产教研协同育人模式下电子封装专业教学改革实践与探索. 高教学刊. 2024(33): 135-138 . 百度学术
4. 唐盘良,李亚飞,黄莹,张钧翀,冷俊林,马晋毅. 陶瓷封装SAW滤波器除金工艺研究. 压电与声光. 2024(05): 695-699 . 百度学术
5. 李亚飞,王宇翔,籍晓亮,温桎茹,米佳,汪红兵,郭福. 金锡镀层在CSP气密封装中的应用及其可靠性. 焊接学报. 2023(12): 49-55+140 . 本站查看
6. 关若飞,贾强,赵瑾,张宏强,王乙舒,邹贵生,郭福. 高性能功率器件封装及其功率循环可靠性研究进展. 焊接学报. 2023(12): 124-136+144 . 本站查看
7. 王小伟,王凤江. Sn-58Bi微焊点组织与力学性能的尺寸效应行为. 焊接学报. 2023(12): 70-74+81+141-142 . 本站查看
其他类型引用(7)